644 resultados para Levure à fission


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship of mitochondrial dynamics and function to pluripotency are rather poorly understood aspects of stem cell biology. Here we show that growth factor erv1-like (Gfer) is involved in preserving mouse embryonic stem cell (ESC) mitochondrial morphology and function. Knockdown (KD) of Gfer in ESCs leads to decreased pluripotency marker expression, embryoid body (EB) formation, cell survival, and loss of mitochondrial function. Mitochondria in Gfer-KD ESCs undergo excessive fragmentation and mitophagy, whereas those in ESCs overexpressing Gfer appear elongated. Levels of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) are highly elevated in Gfer-KD ESCs and decreased in Gfer-overexpressing cells. Treatment with a specific inhibitor of Drp1 rescues mitochondrial function and apoptosis, whereas expression of Drp1-dominant negative resulted in the restoration of pluripotency marker expression in Gfer-KD ESCs. Altogether, our data reveal a novel prosurvival role for Gfer in maintaining mitochondrial fission-fusion dynamics in pluripotent ESCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social and ecological factors are important in shaping sexual dimorphism in Anthropoidea, but there is also a tendency for body-size dimorphism and canine dimorphism to increase with increased body size (Rensch's rule) (Rensch: Evolution Above the Species Level. London: Methuen, 1959.) Most ecologist interpret Rensch's rule to be a consequence of social and ecological selective factors that covary with body size, but recent claims have been advanced that dimorphism is principally a consequence of selection for increased body size alone. Here we assess the effects of body size, body-size dimorphism, and social structure on canine dimorphism among platyrrhine monkeys. Platyrrhine species examined are classified into four behavioral groups reflecting the intensity of intermale competition for access to females or to limiting resources. As canine dimorphism increases, so does the level of intermale competition. Those species with monogamous and polyandrous social structures have the lowest canine dimorphism, while those with dominance rank hierarchies of males have the most canine dimorphism. Species with fission-fusion social structures and transitory intermale breeding-season competition fall between these extremes. Among platyrrhines there is a significant positive correlation between body size and canine dimorphism However, within levels of competition, no significant correlation was found between the two. Also, with increased body size, body-size dimorphism tends to increase, and this correlation holds in some cases within competition levels. In an analysis of covariance, once the level of intermale competition is controlled for, neither molar size nor molar-size dimorphism accounts for a significant part of the variance in canine dimorphism. A similar analysis using body weight as a measure of size and dimorphism yields a less clear-cut picture: body weight contributes significantly to the model when the effects of the other factors are controlled. Finally, in a model using head and body length as a measure of size and dimorphism, all factors and the interactions between them are significant. We conclude that intermale competition among platyrrhine species is the most important factor explaining variations in canine dimorphism. The significant effects of size and size dimorphism in some models may be evidence that natural (as opposed to sexual) selection also plays a role in the evolution of increased canine dimorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many mammals, early social experience is critical to developing species-appropriate adult behaviors. Although mother-infant interactions play an undeniably significant role in social development, other individuals in the social milieu may also influence infant outcomes. Additionally, the social skills necessary for adult success may differ between the sexes. In chimpanzees (Pan troglodytes), adult males are more gregarious than females and rely on a suite of competitive and cooperative relationships to obtain access to females. In fission-fusion species, including humans and chimpanzees, subgroup composition is labile and individuals can vary the number of individuals with whom they associate. Thus, mothers in these species have a variety of social options. In this study, we investigated whether wild chimpanzee maternal subgrouping patterns differed based on infant sex. Our results show that mothers of sons were more gregarious than mothers of daughters; differences were especially pronounced during the first 6 mo of life, when infant behavior is unlikely to influence maternal subgrouping. Furthermore, mothers with sons spent significantly more time in parties containing males during the first 6 mo. These early differences foreshadow the well-documented sex differences in adult social behavior, and maternal gregariousness may provide sons with important observational learning experiences and social exposure early in life. The presence of these patterns in chimpanzees raises questions concerning the evolutionary history of differential social exposure and its role in shaping sex-typical behavior in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.

To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.

I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.

Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for nuclear data far from the valley of stability, for applications such as nuclear as- trophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in funda- mental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological mod- els, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinesins are motor proteins that convert chemical energy from ATP hydrolysis into mechanical energy used to generate force along microtubules, transporting organelles, vesicles, and proteins within the cell. Kar3 kinesins are microtubule minus-end-directed motors with pleiotropic functions in mating and mitosis of budding and fission yeast. In Saccharomyces cerevisiae, Kar3 is multifunctionalized by two non-catalytic companion proteins, Vik1 and Cik1. A Kar3-like kinesin and a single Vik1/Cik1 ortholog are also expressed by the filamentous fungus Ashbya gossypii, which exhibits different nuclear movement challenges and unique microtubule dynamics from its yeast relatives. We hypothesized that these differences in A. gossypii physiology could translate into interesting and novel differences in its versions of Kar3 and Vik1/Cik1. Presented here is a structural and functional analysis of recombinantly expressed and purified forms of these motor proteins. Compared to the previously published S. cerevisiae Kar3 motor domain structure (ScKar3MD), AgKar3MD displays differences in the conformation of the ATPase pocket. Perhaps it is not surprising then that we observed the maximal microtubule-stimulated ATPase rate (kcat) of AgKar3MD to be approximately 3-fold slower than ScKar3MD, and that the affinity of AgKar3MD for microtubules (Kd,MT) was lower than ScKar3MD. This may suggest that elements that compose the ATPase pocket and that participate in conformational changes required for efficient ATP hydrolysis or products release work differently for AgKar3 and ScKar3. There are also subtle structural differences in the disposition of the secondary structural elements in the small lobe (B1a, B1b, and B1c) at the edge of the motor domain of AgKar3 that may reflect the enhanced microtubule-depolymerization activity that we observed for this motor, or they could relate to its interactions with a different regulatory companion protein than its budding yeast counterpart. Although we were unable to gain experimentally determined high-resolution information of AgVik1, the results of Phyre2-based bioinformatics analyses may provide a structural explanation for the limited microtubule-binding activity we observed. These and other fundamental differences in AgKar3/Vik1 could explain divergent functionalities from the ScKar3/Vik1 and ScKar3/Cik1 motor assemblies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The laser-induced photodissociation of formaldehyde in the wavelength range 309<λ<330nm 309<λ<330nm has been investigated using H (Rydberg) atom photofragment translational spectroscopy. Photolysis wavelengths corresponding to specific rovibronic transitions in the A ˜ A 2 1 ←X ˜ A 1 1 ÃA21←X̃A11 2 1 0 4 3 0 201403 , 2 2 0 4 1 0 202401 , 2 2 0 4 3 0 202403 , 2 3 0 4 1 0 203401 , and 2 1 0 5 1 0 201501 bands of H 2 CO H2CO were studied. The total kinetic energy release spectra so derived can be used to determine partial rotational state population distributions of the HCO cofragment. HCO product state distributions have been derived following the population of various different N K a NKa levels in the A ˜ A 2 1 ÃA21 2 2 4 3 2243 and 2 3 4 1 2341 states. Two distinct spectral signatures are identified, suggesting competition between dissociation pathways involving the X ˜ A 1 1 X̃A11 and the a ˜ A 2 3 ãA23 potential energy surfaces. Most rovibrational states of H 2 CO(A ˜ A 2 1 ) H2CO(ÃA21) investigated in this work produceH+HCO(X ˜ A ′ 2 ) H+HCO(X̃A′2) photofragments with a broad kinetic energy distribution and significant population in high energy rotational states of HCO. Photodissociation via the A ˜ A 2 1 ÃA21 2 2 4 3 2243 1 1,1 11,1 (and 1 1,0 11,0 ) rovibronic states yields predominantly HCO fragments with low internal energy, a signature that these rovibronic levels are perturbed by the a ˜ A 2 3 ãA23 state. The results also suggest the need for further careful measurements of the H+HCO H+HCO quantum yield from H 2 CO H2CO photolysis at energies approaching, and above, the barrier to C–H bond fission on the a ˜ A 2 3 ãA23 potential energy surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Schizosaccharomyces pombe (fission yeast), the transition from G2 phase of the cell cycle to mitosis is under strict regulation. The activation of Cdc2, a cyclin dependent serine/threonine protein kinase, is the critical control step in this process. The Cdc2/Cyclin-B (Cdc13) complex is regulated by Wee1 tyrosine kinase and Cdc25 tyrosine phosphatase, which work antagonistically to control progression into mitosis. Hyperactivation of the Cdc2/Cdc13 complex by phosphorylation results in premature mitosis, and as a consequence leads to genome instability. This is referred to as mitotic catastrophe, a lethal phenotype associated with chromosomal segregation abnormalities including chromosome breakage. Six mitotic catastrophe loci were found, five of which have been characterized and identified as various activators and repressors of the core mitotic control. The locus for mcs3 remains unknown. I used tetrad analysis in this study to determine the linkage distance between three genes suspected of flanking the region in which mcs3 is located. Linkage distances obtained in this study confirm that the SPBC428.10 and met17, as well as SPBC428.10 and wpl1 are tightly linked, suggesting this is an area of low recombination. Further linkage analysis should be conducted to determine the precise location of mcs3-12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell size control and mitotic timing in Schizosaccharomyces pombe is coupled to the environment through several signal transduction pathways that include stress response, checkpoint and nutritional status impinging on Cdc25 tyrosine phosphatase and Wee1 tyrosine kinase. These in turn regulate Cdc2 (Cdk1) activity and through a double feedback loop, further activates Cdc25 on 12 possible phosphorylation sites as well as inhibiting Wee1. Phosphomutants of the T89 Cdc2 phosphorylation site on Cdc25, one with a glutamate substitution (T89E) which is known to phosphomimetically activate proteins and an alanine substitution (T89A), which is known to block phosphorylation, exhibit a small steady-state cell size (semi-wee phenotype), a known hallmark for aberrant mitotic control. To determine whether the T89 phosphorylation site plays an integral role in mitotic timing, the phosphomutants were subjected to nitrogen shifts to analyze their transient response in the context of nutritional control. Results for both up and downshifts were replicated for the T89E phosphomutant, however, for the T89A phosphomutant, only a nutritional downshift has been completed so far. We found that the steady-state cell size of both phosphomutants was significantly smaller than the wild-type and in the context of nutritional control. Furthermore, the constitutively activated T89E phosphomutant exhibits residual mitotic entry, whereas the wild-type undergoes a complete mitotic suppression with mitotic recovery also occurring earlier than the wild-type. In response to downshifts, both phosphomutants exhibited an identical response to the wild-type. Further characterization of the other Cdc2 phosphorylation sites on Cdc25 are required before conclusions can be drawn, however T89 remains a strong candidate for being important in activating Cdc25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently discovered unbound asteroid pairs have been suggested to be the result of the decoupling of binary asteroids formed either through collision processes or, more likely, rotational fission of a rubble-pile asteroid after spin-up (Vokrouhlicky et al. 2008, AJ 136, 280; Pravec et al., 2010, Nature, 466, 1085). Much of the evidence for linkage of the asteroids in each pair relies solely on the backwards integrations of their orbits. We report new results from our continuing spectroscopic survey of the unbound asteroid pairs, including the youngest known pair, (6070) Rhineland - (54827) 2001 NQ8. The survey goal is to determine whether the asteroids in each unbound pair have similar spectra and therefore composition, expected if they have formed from a common parent body. Low-resolution spectroscopy covering the range 0.4-0.95 microns was conducted using the 3.6m ESO NTT+EFOSC2 during 2011-2012 and the 4.2m WHT+ACAM. We have attempted to maintain a high level of consistency between the observations of the components in each pair to ensure that differences in the asteroid spectra are not the result of the observing method or data reduction, but purely caused by compositional differences. Our WHT data indicates that the asteroids of unbound pair 17198 - 229056 exhibit different spectra and have been assigned different taxonomies, A and R respectively. Initial analysis of our data from the NTT suggests that the asteroids in unbound pairs 6070 - 54827 and 38707 - 32957 are likely silicate-dominated asteroids. The components of pair 23998 - 205383 are potentially X-type asteroids. We present final taxonomic classifications and the likelihood of spectral similarity in each pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intersectin is a multidomain dynamin-binding protein implicated in numerous functions in the nervous system, including synapse formation and endocytosis. Here, we demonstrate that during neurotransmitter release in the central synapse, intersectin, like its binding partner dynamin, is redistributed from the synaptic vesicle pool to the periactive zone. Acute perturbation of the intersectin-dynamin interaction by microinjection of either intersectin antibodies or Src homology 3 (SH3) domains inhibited endocytosis at the fission step. Although the morphological effects induced by the different reagents were similar, antibody injections resulted in a dramatic increase in dynamin immunoreactivity around coated pits and at constricted necks, whereas synapses microinjected with the GST (glutathione S-transferase)-SH3C domain displayed reduced amounts of dynamin in the neck region. Our data suggest that intersectin controls the amount of dynamin released from the synaptic vesicle cluster to the periactive zone and that it may regulate fission of clathrin-coated intermediates.