972 resultados para Leaf fertilizer
Resumo:
近年来,随着对作物重茬障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。花椒(Zanthoxy piperitum.)为芸香科植物,是一种收益早、用途广、价值高的经济树种,是川西干旱河谷地区的重要经济作物,其连作障碍也倍受关注,系统研究花椒化感作用将有助于理解和最终解决花椒连作障碍问题。本文首先通过萃取、层析等方法分离花椒主效化感成分;通过外加不同浓度的花椒叶水浸液研究了对土壤氮素养分循环的影响;研究了花椒叶水浸液对苜蓿生理生化、光合作用、氮素养分吸收的影响,并对外施氮肥对这种化感影响的缓解作用做了研究;研究了花椒化感潜力对全球变化——UV-B增强辐射的响应。主要研究结果如下: 1.用不同极性的有机溶剂对花椒叶水浸液浓缩浸膏萃取、柱层析,结合生物活性检测,分离得到主效化感作用组分的一种化感物质——对甲氧基苯酚。采用该物质纯品进行生物活性检测,证明其具有化感作用。 2.花椒叶水浸液处理土壤30天后,土壤硝态氮、铵态氮、无机氮(硝态氮+铵态氮)与对照相比,随着花椒叶水浸液浓度的增加呈现降低的趋势,其中土壤铵态氮含量显著降低,而硝态氮含量的变化则不显著,无机氮含量也显著降低。土壤脲酶和蛋白酶的活性与无机氮含量的变化趋势相同。随着花椒叶水浸液浓度的增加,氨化细菌数量显著降低,固氮菌的数量变化不显著,硝化细菌和反硝化细菌数量有减少的趋势。60天后,硝态氮含量、铵态氮含量、无机氮随水浸液浓度增加的变化趋势与30天时相似;随着花椒叶水浸液浓度的增加,氨化细菌、固氮菌的数量显著减少,硝化细菌数量、反硝化细菌数量仍呈减少趋势;土壤脲酶、蛋白酶活性与第30天的变化趋势相同。第60天与第30天的结果相比,相同水浸液浓度处理的硝态氮、铵态氮、无机氮均有下降的趋势,但除了25g.L-1水浸液处理的外,其它相同浓度的处理间差异均不显著;除了12.5 g.L的处理外土壤脲酶活性均呈增强的趋势;蛋白酶活性都有不同程度的增加;花椒叶水浸液处理的土壤硝化细菌和反硝化细菌数量呈增加趋势。 3.随着花椒叶水浸液浓度的增加,显著抑制了苜蓿根长、地上地下生物量、叶绿素含量、叶片中可溶性蛋白的含量,净光合速率。苜蓿体内四种抗氧化酶(POD、SOD、CAT、APX) 活性随着水浸液浓度的增加而降低,而丙二醛含量则增加。苜蓿氮初级同化相关酶硝酸还原酶(NR)、谷氨酰合成酶(GS)、谷氨酸脱氢酶(GDH)的活性随着水浸液浓度的增加受到不同程度的影响。总的来说,苜蓿硝酸还原酶、谷氨酰合成酶的活性受到抑制,而谷氨酸脱氢酶活性的变化则比较复杂,根呈先降低后增加的趋势,叶片则无显著变化。外施两种不同浓度的硝酸铵氮肥后,对12.5、25 g.L-1花椒叶水浸液处理的苜蓿化感作用有显著的缓解作用,表现在株高、生物量、光合作用等方面,大多达到与对照(0 g.L-1)未施氮肥无显著差异的水平,而对50 g.L-1水浸液处理的苜蓿幼苗,虽有一定的缓解作用,但这种作用均未达到与对照(0 g.L-1)未施氮肥时无显著差异的水平。 4. UV-B增强辐射处理花椒后,花椒的化感潜力显著增强。花椒叶片内UV-B吸收物质的含量和总酚含量均显著增加。 In recent years, with profound research on the reasons of continuous cropping obstacles, allelopathy received increasing attention to many scholars at home and abroad. Zanthoxy bungeanum as a Rutaceae plant is a high economic value species which gains early and uses widely. Zanthoxylum is an important economic crop in the arid valley of western Sichuan region, and its not even has received much concern for the continuous cropping obstacles. The systematic study of allelopathy of Zanthoxylum will contribute to the understanding and final settlement of this issue. The major allelopathic composition was separated through the extraction, chromatography combined with other methods. The impact on soil nutrient cycling was also studied through the addition of different concentrations of water extracts of Zanthoxylum. Furthermore, the effects of water extracts of Zanthoxylum leaves on alfalfa leaf physiological and biochemical indexes, photosynthesis, soil enzymes and nutrient uptake of nitrogen and the mitigation of allelopathy through using external fertilizer were studied to put forward scientific resolvent for Zanthoxylum continuous cropping obstacles .The response of allelopathic potential of Zanthoxylum to global change - UV-B enhanced radiation was studied . The main findings are as follows: 1. Through extraction with different polar organic solvents on concentrated water extract of Zanthoxylum leaf and then using column chromatography combined with detection of biological activity, one of the main allelopathic components- methoxy-phenol was isolated. The biological activity testing of the pure material of methoxy-phenol proved that it does have allelopathic potential. 2. Thirty days after treating soil with water extract of Zanthoxylum leaf, as compared with the control, the contents of soil nitrate, ammonium, nitrate plus ammonium nitrogen showed a trend of decrease with the increase of the concentration of water extract whereas the content of ammonium nitrogen showed a significant reduction, and the content of nitrate did not change significantly, the content of nitrate plus ammonium nitrogen also showed a significant (P <0.05) redction. The activity of soil urease and protease showed the same trend as the content of nitrate nitrogen plus ammonium nitrogen. With the increase in the concentration of water extract, the number of ammonification bacteria significantly reduced but nitrogen-fixing bacteria did not change significantly and there was a decreasing trend in the number of nitrifying bacteria and denitrifying bacteria. Sixty days after the treatment, with the increase in solution concentration of water extract of Zanthoxylum leaf, the content of nitrate、 ammonium nitrogen, nitrate plus ammonium nitrogen showed a similar change trend to 30 days’; the number of ammonification bacteria, nitrogen-fixing bacteria significantly reduced ; the number of nitrifying bacteria, denitrifying bacteria was still an downward trend; the activity of soil urease and protease showed the same trend as the 30th days’. Compared to the results of the 30th days’, the content of nitrate, ammonium, nitrate plus ammonium nitrogen showed a decrease trend between the treatment of same concentration, but there was no significant difference except the treatment of 25g.L-1 between the same concentration; the activity of soil urease showed enhanced trend except the treatment of 12.5 g.L-1; the activity of protease increased to varying degrees; the number of ammonification bacteria、 nitrifying bacteria and denitrifying bacteria were growing while nitrogen-fixing bacteria reduced.. 3. With the increase of the concentration of water extract of Zanthoxylum leaf, the water extract significantly inhibited the root length, aboveground biomass, content of chlorophyll and soluble protein in leaf and net photosynthetic rate. The activity of four antioxidant enzymes (POD, SOD, CAT, APX) reduced with the increase in concentration of the water extract but the content of MDA increased. The activity of enzymes related to primary nitrogen assimilation such nitrate reductase (NR), glutamyl synthetase (GS), glutamate dehydrogenase (GDH) were subject to different degrees with an increase in the concentration of water extracts. In general, the activity of nitrate reductase, glutamyl synthetase were inhibited, while change in the activity of glutamate dehydrogenase was more complex. The activity of glutamate dehydrogenase in leaf was first reduced and then increase,but did not change significantly in root. After using two external different concentrations of nitrogen fertilizer, there was a significant mitigation in inhibiton in plant height, biomass, photosynthesis, etc. in the treatment of 12.5,25 gL-1 of water extract of Zanthoxylum leaf, and most of these indexes showed no significant difference with the control (0 g.L-1, no external fertilizer was added) .Although there showed a certain degree of ease in the treatment of 50 g.L-1 , there was still a significant difference compared with the control (0 gL-1) in which no external fertilizer was used. 4.The allelopathic potential of Zanthoxylum positively responded to enhanced UV-B significantly. The content of UV-B absorbing compounds and the total phenol also significant increased.
Resumo:
人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B背景下的康定杨与青杨在增强UV-B下的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B能力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B处理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B导致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A、叶绿素B及整个叶绿素含量没有影响。两种杨树对UV-B胁迫的响应存在差异:在增强UV-B条件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B吸收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B吸收物质含量及SOD、GPX活性差异是导致对增强UV-B耐性不同的原因。 2. 干旱与增强UV-B对杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B对杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA的积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA含量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B下的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B的影响,其厚度的增加导致整个叶片变厚。增强UV-B还显著提高了杨树的APX活性、UV-B吸收物质含量,而对叶片数目、ABA、可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B响应的差异:与康定杨相比,在增强UV-B下青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B吸收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B有较强的耐性。 与水分充足情况下UV-B对植株的影响相比,干旱对杨树抗增强UV-B产生了一定的影响,表现为加剧或减弱UV-B对植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B共同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B促使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B的影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B对栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B对栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B均导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B所减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B的影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPX、APX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B处理,杨树叶片中UV-B吸收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B两种杨树受到的影响也有所不同:在青杨中增强UV-B导致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B背景的长期适应结果。康定杨长期生长在较高UV-B环境中,对UV-B有较强的耐性。而青杨适应于较低的UV-B环境,对增强UV-B较为敏感。 试验中施肥也影响了植株对增强UV-B的反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B的显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPX、APX在青杨中的活性、GPX在康定杨中的活性对增加UV-B反应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.
Resumo:
人类活动引起全球大气中温室气体(CO2、CH4、NOx)浓度不断增加,致使地球表面温度在过去的100 年中已经增长了0.74 ± 0.18℃,预计到本世纪末将会增加1.1-6.4℃。此外,氮沉降也是当今社会的重要环境问题,随着经济发展的全球化, 高氮沉降也呈现出全球化趋势。全球气候变暖和氮沉降给陆地生态系统的地上、地下生物学和生物地球化学过程所带来巨大影响越来越引起人们的关注。 本文以川西亚高山针叶林的两个重要树种云杉和油松幼苗为研究对象,采用红外辐射增温(空气增温2.1℃,土壤增温2.6℃)和根部施氮(施氮量25 g N m-2yr-1)的方法,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究这两种幼苗对气候变暖和氮沉降的响应。该实验为室外控制实验,包括四个处理:(1)不增温+不施氮(UU);(2) 不增温+施氮(UF);(3) 增温+不施氮(WU);(4) 增温+施氮(WF)。本研究旨在从生理生化、物质代谢 、生长及形态等不同水平上研究模拟增温和施氮对两种树苗的联合效应,提高我们对全球变化下亚高山针叶林早期更新过程的理解,同时也为森林管理提供科学依据。具体研究结果如下: 单独增温处理显著提高了云杉和油松幼苗的地茎、叶重、茎重、根重以及总生物量;单独施氮处理也增加了两种幼苗的株高和总生物量。而增温和施氮联合作用对两种幼苗生长的影响并不相同,联合作用对云杉幼苗生长指标的正效应显著低于单独施氮处理,但是联合作用比单独增温或施氮更大程度的促进了油松幼苗生物量的积累。 单独增温和施氮都有利于提高云杉和油松叶片中叶绿素含量、净光合速率(A)、最大净光合速率(Amax)、表观量子效率(Φ)、最大光能转化效率(Fv/Fm)和量子产量(Y)。与对两种幼苗生长指标的影响相似,加氮和增温共同作用下油松幼苗的以上光合指标比在单独增温或施氮处理下有更大程度的提高;而联合作用下云杉幼苗叶绿素含量、净光合速率、最大净光合速率、表观量子效率、最大光能转化效率以及量子产量比单独施氮处理明显地降低。 增温和施氮都显著地降低了云杉和油松幼苗针叶组织中活性氧和丙二醛的积累。交互作用降低了云杉幼苗叶片的抗氧化酶活性、脯氨酸和ASA 的含量,却显著提高了油松幼苗SOD、POD、APX 等抗氧化酶的活性,并且对油松幼苗脯氨酸和ASA 积累的促进作用比单一因子更加明显。因此,增温和施氮共同作用下油松幼苗叶片中O2-产生速率、H2O2 及MDA 含量明显降低,而云杉叶片中只有O2-产生速率出现降低趋势。 增温和施氮都降低了云杉体内的P、Ca、Mg 元素的含量,增加了Cu、Zn、Mn 在各器官内的积累。对油松幼苗而言,增温和加氮单独作用也显著降低了Ca 含量增加了Cu、Zn、Mn 的积累,但是不同于云杉幼苗的是P、Mg 也显著增加。增温和施氮联合作用对云杉幼苗体内元素的影响与单一施氮处理或增温处理相似,不同的是比单一因子作用更为明显降低了P、Ca、Mg 含量,增加了植株中N、Cu、Zn、Mn 的含量,但是油松矿质元素含量在联合作用下并没有产生类似于云杉幼苗的双因子叠加效应。 总之,尽管单独增温或者施氮都有利于云杉和油松幼苗生长指标、光合能力以及抗氧化能力的提高。但是,增温和施氮对云杉幼苗生长生理的促进效应非但没有在交互作用下有更大的提高,反而低于单独氮处理。与此不同的是,增温和施氮联合作用比单因子作用更有利于油松幼苗生长及生理指标的提高。 With the continued increase in atmospheric concentrations of greenhouse gases (CO2、CH4、NOx), the mean global surface temperature has increased by about 0.74 ± 0.18℃ over the past century and is predicted to rise by as much as 6.4℃ during this century. Besides global warming, nitrogen deposition is another serious environmental problem caused by human activities, and high nitrogen load has become globalization as a result of global economy development. Global climate warming and nitrogen deposition have induced dramatic alternations in above - and below- ground biology and biogeochemistry process in terrestrial ecosystems, and more and more attention has been invited to those problems. This experiment mainly studies two important species Picea asperata and Pinus tabulaeformis in subalpine coniferous forest of western Sichuan, China. Infared heaters are induced to increase both air and soil temperature by 2.1℃ and 2.6 ℃, respectively. Ammonium nitrate solution (for a total equivalent to 25 g N m-2 year-1) is added to soil surface. There are four treatments in this study: (1) unwarmed unfertilized (UU); (2) unwarmed fertilized (UF); (3) warmed unfertilized (WU); (4) warmed fertilized (WF). This study is conducted to determine the influences of experimental warming and nitrogen fertilization on physiolchemistry, nutrition metabolism, growth and morphology in the two coniferous species seedlings. The current study is favorable for increasing our understanding on the early phase of regeneration behavior in subalpine coniferous forest, and it also provide scientific direction for forest management under future global changes. The results are as follows: Artificial warming alone significantly increased basal diameter, leaf mass, stem mass, root mass and total biomass for Picea asperata and Pinus tabulaeformis seedlings, and single nitrogen fertilization are also favorable for growth of the two species and stimulate plant hight and total biomass. The two species seedlings respond differently to the combination of elevated temperature and nitrogen addition. Warming combined with nitrogen fertilization weakens the positive effects of nitrogen addition for growth of Picea asperata seedlings. However, the combination of elevated temperature and nitrogen fertilization further increase biomass accumulation of Pinus tabulaeformis seedlings. Both elevated temperature alone and nitrogen fertilization alone can increase photosynthetic pigments contents, net photosynthetic rate (A), maximum net photosynthetic rate (Amax), apparent quantity yield (Φ), maximum photochemical efficiency of photosystem II (Fv/Fm) and effective quantum yield (Y). Similarly with growth parameters, the combination of warming and nitrogen addition induced more increment of these above photosynthetic parameters for Pinus tabulaeformis seedlings. However, these photosynthetic parameters of Picea asperata seedlings under the combination of warming and nitrogen addition are lower than those under nitrogen fertilization alone. The levels of active oxygen species (AOS) and malodiadehyde (MDA) in needles of the two coniferous species seedling are obviously decreased by experimental warming or additional nitrogen. Warming combined with nitrogen fertilizer reduces the activities of SOD, CAT and APX, and the contents of proline and ASA of Picea asperata seedlings, but the combination significantly increases activities of these antioxidant enzymes in needlels of Pinus tabulaeformis seedlings and further improves the accumulation of proline and ASA compared to either artificial warming or nitrogen addition. Therefore, the rate of O2 - production, the contents of H2O2 and MDA in needles of Pinus tabulaeformis seedlings are remarkably reduced by the combination of warming and nitrogen addition, but the combination only significantly decreased the rate of O2 - production of Picea asperata seedlings. Elevated temperature or nitrogen fertilization decrease the contents of P, Ca, Mg but increase Cu, Zn, Mn contents for Picea asperata seedlings. For Pinus tabulaeformis seedlings, elevated temperature alone and nitrogen fertilization alone decreased Ca, but increased P, Mg, Cu, Zn, Mn contents. The effects of the combination of warming and nitrogen addition on these element contents in needles of Picea asperata seedlings are added or multiplied the effects of warming and nitrogen addition alone, resulting in less contens of P, Ca, Mg and more contents of Cu, Zn, Mn than either elevated temperature or nitrogen fertilization. Howere, these adding or multipluing single-factor effects on contents of these elements are not observed in the case of Pinus tabulaeformis seedlings. In conclusion, growth parameters, photosynthetic capacities and antioxidant abilities of Picea tasperata and Pinus abulaeformis seedlings are improved by experimental warming or nitrogen fertilization. Interestingly, the positive effects of warming and nitrogen addition on growth and physiological performances are not multiplied by the combination of elevated temperature and nitrogen fertilization, even dempened for Picea asperata seedlings. However, for Pinus tabulaeformis seedlings, growth and physiological performances are further improved by the combination.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
The effect of C-12(6+) heavy ions bombardment on mutagenesis in Salvia splendens Ker-Gawl. was studied. Dose-response studies indicated that there was a peak of malformation frequency of S. splendens at 200 Gy. Abnormal leaf mutants of the bileaf, trileaf and tetraleaf conglutination were selected. Meanwhile, a bicolor flower chimera with dark red and fresh red flower was isolated in M1 generation of S. splendens. Random amplified polymorphic DNA (RAPD) analysis demonstrated that DNA variations existed among the wild-type, fresh and dark red flower shoots of the chimera. The dark red flower shoots of the chimera were conserved and cultivated at a large-scale through micropropagation. MS supplemented with 2.0 mg/L BA and 0.3 mg/L NAA was the optimal medium in which the maximum proliferation ratio (5.2-fold) and rooting rate (88%) were achieved after 6 weeks. Our findings provide an important method to improve the ornamental quality of S. splendens.
Resumo:
Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.
Resumo:
The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the Xray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpatdia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.
Resumo:
采用盆栽试验研究了秸秆配方、废料配方和胶土配方3种改良剂与氮肥配施对玉米植株生长状况、生物量、叶绿素含量、全N及全P含量的影响。结果表明:3种改良剂与0.5 g/盆氮肥配施可以显著提高株高、茎粗、叶面积、地上地下生物量、叶绿素含量及植株全N含量,且以秸秆配方配施效果最佳,过量施用氮肥(1.0 g/盆)时,各指标与0.5 g氮肥水平下的值相比增加幅度甚小,茎粗和地下生物量甚至有下降的趋势。改良剂因素和氮肥因素对全P含量也有一定的影响,但二者交互作用对其并未产生显著性影响。因此,在施加改良剂的条件下可以适当地减少肥料的使用量,在满足植物体吸收利用前提下,既减少了养分投入和浪费,又减轻了对环境的污染。
Resumo:
比较研究了氮磷营养对春小麦水分关系影响的差异。结果表明 ,土壤干旱情况下 ,氮磷营养虽然皆增强了春小麦的渗透调节能力 ,但由于氮磷营养对作物地上地下部生长的不同进促作用而对作物的水分状况产生了完全相反的影响。氮营养增强了作物对干旱的敏感性 ,使其水势和相对含水量大幅度下降 ,蒸腾失水减少 ,自由水含量增加而束缚水含量减少 ,并使膜稳定性降低 ;而磷营养则明显改善了植株的水分状况 ,增大了气孔导度 ,降低了其对干旱的敏感性 ,增加了束缚水含量 ,并使膜稳定性增强