899 resultados para Laser confocal microscopy
Resumo:
OBJECTIVE: Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS: Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS: Expression of α5β1/αvβ3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5β1/αvβ3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS: This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.
Resumo:
This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.
Resumo:
INTRODUCTION: Our recent study indicated that subchondral bone pathogenesis in osteoarthritis (OA) is associated with osteocyte morphology and phenotypic abnormalities. However, the mechanism underlying this abnormality needs to be identified. In this study we investigated the effect of extracellular matrix (ECM) produced from normal and OA bone on osteocytic cells function. METHODS: De-cellularized matrices, resembling the bone provisional ECM secreted from primary human subchondral bone osteoblasts (SBOs) of normal and OA patients were used as a model to study the effect on osteocytic cells. Osteocytic cells (MLOY4 osteocyte cell line) cultured on normal and OA derived ECMs were analyzed by confocal microscopy, scanning electron microscopy (SEM), cell attachment assays, zymography, apoptosis assays, qRT-PCR and western blotting. The role of integrinβ1 and focal adhesion kinase (FAK) signaling pathways during these interactions were monitored using appropriate blocking antibodies. RESULTS: The ECM produced by OA SBOs contained less mineral content, showed altered organization of matrix proteins and matrix structure compared with the matrices produced by normal SBOs. Culture of osteocytic cells on these defective OA ECM resulted in a decrease of integrinβ1 expression and the de-activation of FAK cell signaling pathway, which subsequently affected the initial osteocytic cell's attachment and functions including morphological abnormalities of cytoskeletal structures, focal adhesions, increased apoptosis, altered osteocyte specific gene expression and increased Matrix metalloproteinases (MMP-2) and -9 expression. CONCLUSION: This study provides new insights in understanding how altered OA bone matrix can lead to the abnormal osteocyte phenotypic changes, which is typical in OA pathogenesis.
Resumo:
Aims Corneal nerve morphology and corneal sensation threshold have recently been explored as potential surrogate markers for the evaluation of diabetic neuropathy. We present the baseline findings of the ‘Longitudinal Assessment of Neuropathy in type 1 Diabetes using novel ophthalmic Markers’(LANDMark) study. Methods The LANDMark study is a 4-year, two-site, natural history study of three participant groups: type 1 diabetes with neuropathy (T1W), type 1 diabetes without neuropathy (T1WO) and control participants without diabetes or neuropathy. All participants undergo a detailed annual assessment of neuropathy including corneal nerve parameters measured using corneal confocal microscopy and corneal sensitivity measured using non-contact corneal aesthesiometry. Results 76 T1W, 166 T1WO and 154 control participants were enrolled into the study. Corneal sensation threshold (mbars) was significantly higher (i.e. sensitivity was lower) in T1W (1.0 ± 1.1) than T1WO (0.7 ± 0.7) and controls (0.6 ± 0.4) (p < 0.001), with no difference between T1WO and controls. Corneal nerve fibre length was lower in T1W (14.0 ± 6.4 mm/mm2) compared to T1WO (19.1 ± 5.8 mm/mm2) and controls (23.2 ± 6.3 mm/mm2) (p < 0.001). Corneal nerve fibre length was lower in T1WO compared to controls. Conclusions The LANDMark baseline findings confirm a reduction in corneal sensitivity only in Type 1 patients with neuropathy. However, corneal nerve fibre length is reduced even in Type 1 patients without neuropathy with an even greater deficit in Type 1 patients with neuropathy.
Resumo:
AIMS: Recent studies on corneal markers have advocated corneal nerve fibre length as the most important measure of diabetic peripheral neuropathy. The aim of this study was to determine if standardizing corneal nerve fibre length for tortuosity increases its association with other measures of diabetic peripheral neuropathy. METHODS: Two hundred and thirty-one individuals with diabetes with either predominantly mild or absent neuropathic changes and 61 control subjects underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10-g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length and corneal nerve fibre tortuosity were measured using corneal confocal microscopy. A tortuosity-standardised corneal nerve fibre length variable was generated by dividing corneal nerve fibre length by corneal nerve fibre tortuosity. Differences in corneal nerve morphology between individuals with and without diabetic peripheral neuropathy and control subjects were determined and associations were estimated between corneal morphology and established tests of, and risk factors for, diabetic peripheral neuropathy. RESULTS: The tortuosity-standardised corneal nerve fibre length variable was better than corneal nerve fibre length in demonstrating differences between individuals with diabetes, with and without neuropathy (tortuosity-standardised corneal nerve fibre length variable: 70.5 ± 27.3 vs. 84.9 ± 28.7, P < 0.001, receiver operating characteristic area under the curve = 0.67; corneal nerve fibre length: 15.9 ± 6.9 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.004, receiver operating characteristic area under the curve = 0.64). Furthermore, the tortuosity-standardised corneal nerve fibre length variable demonstrated a significant difference between the control subjects and individuals with diabetes, without neuropathy, while corneal nerve fibre length did not (tortuosity-standardised corneal nerve fibre length variable: 94.3 ± 27.1 vs. 84.9 ± 28.7, P = 0.028; corneal nerve fibre length: 20.1 ± 6.3 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.084). Correlations between corneal nerve fibre length and established measures of neuropathy and risk factors for neuropathy were higher when a correction was made for the nerve tortuosity. CONCLUSIONS: Standardizing corneal nerve fibre length for tortuosity enhances the ability to differentiate individuals with diabetes, with and without neuropathy.
Resumo:
Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.
Resumo:
Purpose The presence of a lymphocytic infiltration in autonomic ganglia and an increased prevalence of autoantibodies and iritis in diabetic patients with autonomic neuropathy suggests a role for autoimmune mechanisms in the development of diabetic and perhaps somatic neuropathy. Corneal Langerhans cells are antigenpresenting cells which can be identified in corneal immunologic conditions using in-vivo confocal microscopy. The aim of this study was to assess the presence and density of Langerhans cells (LCs) in Bowman’s layer of the cornea in diabetic patients with varying degrees of neuropathy compared to healthy control subjects. Method 128 diabetic patients aged 58±1 years with differing severity of neuropathy (NDS – 4.7±0.28) and 26 control subjects aged 53±3 years were examined with in-vivo corneal confocal microscopy to quantify the density of “Langerhans cells” (LCs). Results LCs were observed more often in diabetic patients (73.8%) compared to control subjects (46.1%), P = 0.001. The LC density (number/mm2) was also significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58, P = 0.001). There was a significant correlation between the density of LCs with age (r = 0.162, P = 0.047) and severity of neuropathy assessed by NDS (r =−0.202, P = 0.02). Conclusions In vivo corneal confocal microscopy enables quantification of Langerhans cells in Bowman’s layer of the cornea. There is a relationship between density of LCs and the degree of nerve damage. Corneal confocal microscopy could be a valuable tool to establish the role of immune mediated corneal nerve damage and provide insights into the pathogenesis of diabetic neuropathy.
Resumo:
Purpose Over the past decade, corneal nerve morphology and corneal sensation threshold have been explored as potential surrogate markers for the evaluation of diabetic neuropathy. We present the baseline findings of a Longitudinal Assessment of Neuropathy in Diabetes using novel ophthalmic Markers (LANDMark). Methods The LANDMark Study is a 5-year, two-site, natural history (observational) study of individuals with Type 1 diabetes stratified into those with (T1W) and without (T1WO) neuropathy according to the Toronto criteria, and control subjects. All study participants undergo detailed annual assessment of neuropathy including corneal nerve parameters measured using corneal confocal microscopy and corneal sensitivity measured using non-contact corneal esthesiometry. Results 396 eligible individuals (208 in Brisbane and 188 in Manchester) were assessed: 76 T1W, 166 T1WO and 154 controls. Corneal sensation threshold (mbars) was significantly higher in T1W (1.0 ± 1.1) than T1WO (0.7 ± 0.7) and controls (0.6 ± 0.4) (P=0.002); post-hoc analysis (PHA) revealed no difference between T1WO and controls (Tukey HSD, P=0.502). Corneal nerve fiber length (mm/mm2) (CNFL) was lower in T1W (13.8 ± 6.4) than T1WO (19.1 ± 5.8) and controls (23.2 ± 6.3) (P<0.001); PHA revealed CNFL to be lower in T1W than T1WO, and lower in both of these groups than controls (P<0.001). Corneal nerve branch density (branches/mm2) (CNBD) was significantly lower in T1W (40 ± 32) than T1WO (62 ± 37) and controls (83 ± 46) (P<0.001); PHA showed CNBD was lower in T1W than T1WO, and lower in both groups than controls (P<0.001). Alcohol and cigarette consumption did not differ between groups, although age, BMI, BP, waist circumference, HbA1c, albumin-creatinine ratio, and cholesterol were slightly greater in T1W than T1WO (p<0.05). Some site differences were observed. Conclusions The LANDMark baseline findings confirm that corneal sensitivity and corneal nerve morphometry can detect differences in neuropathy status in individuals with Type 1 diabetes and healthy controls. Corneal nerve morphology is significantly abnormal even in diabetic patients ‘without neuropathy’ compared to control participants. Results of the longitudinal trial will assess the capability of these tests for monitoring change in these parameters over time as potential surrogate markers for neuropathy.
Resumo:
New technologies for examination of the anterior eye in contact lens practice don’t appear to have taken a huge leap in the past decade however there a several novel adaptations of existing technology worthy of note. In other areas of health we have self-diagnosis via smartphone or other gadgets adapted as medical devices. In practice and research in vitro and in vivo new adaptive technologies have expanded our capabilities in assessing the anterior eye, in particular corneal and conjunctival confocal microscopy.
Resumo:
PURPOSE. Phospholipids are a major component of lens fiber cells and influence the activity of membrane proteins. Previous investigations of fatty acid uptake by the lens are limited. The purpose of the present study was thus to determine whether exogenous fatty acids could be taken up by the rat lens and incorporated into molecular phospholipids. METHODS. Lenses were incubated with fluorescently labeled palmitic acid and then analyzed by confocal microscopy. Concurrently, lenses incubated with either fluorescently labeled palmitic acid or the more physiologically relevant (13)C(18)-oleic acid were sectioned into nuclear and cortical regions and analyzed by highly sensitive and structurally selective electrospray ionization tandem mass spectrometry techniques. RESULTS. The detection of fluorescently labeled palmitic acid, even after 16 hours of incubation, was limited to approximately the outer 25% to 30% of the rat lens. Mass spectrometry also revealed the presence of free (13)C(18)-oleic acid in the cortex but not the nucleus. No evidence could be found for incorporation of fluorescently labeled palmitic acid into phospholipids; however, a low level of (13)C(18)-oleic acid incorporation into phosphatidylethanolamine (PE), specifically PE (PE 16:0/(13)C(18) 18:1) was detected in the lens cortex after 16 hours. CONCLUSIONS. These data demonstrate that uptake of exogenous (e.g., dietary fatty acids) by the lens and their incorporation into phospholipids is minimal, most likely occurring only during de novo synthesis in the outermost region of the lens. This finding adds support to the hypothesis that once synthesized there is no active remodeling or turnover of fiber cell phospholipids.
Resumo:
Background A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk. Conclusion ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.
Resumo:
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.
Resumo:
Purpose:Over the past decade, corneal nerve morphology and corneal sensation threshold have been explored as potential surrogate markers for the evaluation of diabetic neuropathy. We present the baseline findings of a Longitudinal Assessment of Neuropathy in Diabetes using novel ophthalmic Markers (LANDMark). Methods:The LANDMark Study is a 5-year, two-site, natural history (observational) study of individuals with Type 1 diabetes stratified into those with (T1W) and without (T1WO) neuropathy according to the Toronto criteria, and control subjects. All study participants undergo detailed annual assessment of neuropathy including corneal nerve parameters measured using corneal confocal microscopy and corneal sensitivity measured using non-contact corneal esthesiometry. Results:396 eligible individuals (208 in Brisbane and 188 in Manchester) were assessed: 76 T1W, 166 T1WO and 154 controls. Corneal sensation threshold (mbars) was significantly higher in T1W (1.0 ± 1.1) than T1WO (0.7 ± 0.7) and controls (0.6 ± 0.4) (P=0.002); post-hoc analysis (PHA) revealed no difference between T1WO and controls (Tukey HSD, P=0.502). Corneal nerve fiber length (mm/mm2) (CNFL) was lower in T1W (13.8 ± 6.4) than T1WO (19.1 ± 5.8) and controls (23.2 ± 6.3) (P<0.001); PHA revealed CNFL to be lower in T1W than T1WO, and lower in both of these groups than controls (P<0.001). Corneal nerve branch density (branches/mm2) (CNBD) was significantly lower in T1W (40 ± 32) than T1WO (62 ± 37) and controls (83 ± 46) (P<0.001); PHA showed CNBD was lower in T1W than T1WO, and lower in both groups than controls (P<0.001). Alcohol and cigarette consumption did not differ between groups, although age, BMI, BP, waist circumference, HbA1c, albumin-creatinine ratio, and cholesterol were slightly greater in T1W than T1WO (p<0.05). Some site differences were observed. Conclusions:The LANDMark baseline findings confirm that corneal sensitivity and corneal nerve morphometry can detect differences in neuropathy status in individuals with Type 1 diabetes and healthy controls. Corneal nerve morphology is significantly abnormal even in diabetic patients ‘without neuropathy’ compared to control participants. Results of the longitudinal trial will assess the capability of these tests for monitoring change in these parameters over time as potential surrogate markers for neuropathy.
Resumo:
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9)