992 resultados para Lanthanum and samarium,
Resumo:
This paper reports results of geological studies carried out during two marine expeditions of R/VAkademik M.A. Lavrent'ev (Cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within three polygons. On the basis of radioisotope age determinations, petrochemical, and paleontological data all the rocks have been subdivided into the following complexes: volcanic rock of Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; volcanogenic-sedimentary rocks of Late Cretaceous - Early Paleocene, Paleogene (undifferentiated), Oligocene - Early Miocene, and Pliocene-Pleistocene. Determinations of age and chemical composition of the rocks have enabled to specify formation conditions of the complexes and to trace geological evolution of the Vityaz Ridge. Presence of young Pliocene-Pleistocene volcanites allows to conclude about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.
Resumo:
Hypabyssal rocks of the Omgon Range, Western Kamchatka that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5-63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. Early Paleocene age of ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. Ilmenite and titanomagnetite gabbro-dolerites were produced by multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and contamination of these melts with rhyolitic melts of different compositions. Moderate- and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. Biotite granites and granite aplites were produced by combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from Late Cretaceous throughout Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil') continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors.
Resumo:
Ferromanganese micro- and macronodules in eupelagic clays at Site AKO26-35 in the Southwest Pacific Basin were studied in order to check REE distribution during ferromanganese ore formation in non-productive zones of the Pacific Ocean. Host sediments and their labile fraction, ferromanganese micronodules (in size fractions 50-100, 100-250, 250-500, and >500 ?m) from eupelagic clays (horizons 37-10, 105-110, 165-175, and 189-190 cm), and buried ferromanganese micronodules (horizons 64-68, 158-159, and 165-166 cm) were under study. Based on partition analysis data anomalous REE enrichment in eupelagic clays from Site AKO26-35 is related to accumulation of rare earth elements in iron hydroxophosphates. Concentration of Ce generally bound with manganese oxyhydroxides is governed by oxidation of Mn and Ce in ocean surface waters. Micronodules (with Mn/Fe from 0.7 to 1.6) inherit compositional features of the labile fraction of bottom sediments. Concentrations of Ce, Co, and Th depend on micronodule sizes. Enrichment of micronodules in hydrogenic or hydrothermal matter is governed by their sizes and by a dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. Compositional variation of micro- and macronodules relative to the labile fraction of sediments in the Pacific non-productive zone dramatically differs from the pattern in bioproductive zones where micronodule compositions in coarser fractions are similar to those in associated macronodules and labile fractions of host sediments due to more intense suboxidative diagenesis.
Resumo:
The development of laser ablation-inductively coupled plasma-mass spectrometry has revolutionized the analysis of tephras by providing (1) an efficient and precise method for determining abundances of a wide variety of trace elements at low concentrations in individual glass shards and (2) assessment of geochemical heterogeneities within individual ash horizons. This development is important for petrogenetic studies of intraoceanic arc systems, where tephras provide the most complete temporal record of magmatism. Results from the Izu-Bonin and Mariana arc systems indicate that despite close geographical proximity and similar tectonic evolution, they contrast strongly in terms of geochemical evolution since 35 Ma. Whereas the Mariana tephras have exceptional compositional diversity, ranging from low-K (Oligocene), to high-K (Miocene), and subsequently medium-K compositions (Pliocene-Quaternary), the Izu-Bonin arc has been dominated by low-K compositions throughout. The Mariana increases in K are paralleled by increases in abundances of incompatible trace elements and by increased values of diagnostic ratios (e.g., Nb/yb and Th/yb) regarded as monitors of potential mantle-source fertility. The relative uniformity of Nb/yb and Nb/Zr ratios in Izu-Bonin tephras indicates that cyclic processes of backarc basin development and mantle depletion do not necessarily induce large-scale temporal geochemical variations in the associated arc. Temporal variability within the Mariana arc, and its divergence from the Izu-Bonin arc ca. 13 Ma, can be traced to a major injection of subducted sediment in the Mariana system at this time.
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
Behavior of rare earth elements (REE) and Th is studied along the Transatlantic transect at 22°N. It is shown that both REE and Th contents relative to Al (the most lithogenic element) increase toward the pelagic region. The increasing trend becomes more complicated due to variations in content of biogenic calcium carbonate that acts as a diluting component in sediments. REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al+Mn+Fe) and (Fe+Mn)/Ti, do not reach critical values. Variations in REE content and composition allowed to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenous type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th contents depend on Fe content in Atlantic sediments. Therefore, one can suggest that only minor amount of phosphorus is bound with bone debris. Low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic Ocean, as compared with those in pelagic regions of the Pacific Ocean.
Resumo:
The book presents results of comprehensive geological and geophysical studies, carried out in the Cape Verde fault zone in the 3-rd cruise of R/V Akademik Nikolaj Strakhov (1986). Detailed characterization of bottom relief, thickness and structure of the sedimentary cover, magnetic field, crust structure, lithology and stratigraphy of sediments, petrography and geochemistry of magmatic rocks. Conclusions about tectonic layering of the crust and upper mantle in the fault zone, and about a concurrent structural section of large mantle inhomogeneities have been done. The book is the first monographic description of a major fault structure of the ocean floor.
Resumo:
This paper reports results of petrographic and geochemical studies of Miocene-Pleistocene volcanic rocks that accompanied formation of deep-water basins of the Sea of Japan and Sea of Okhotsk. Geochemical types of these rocks, their geodynamic settings, and their derivation from different magmatic sources were determined. Marginal-sea basaltoids from the Sea of Japan are derivatives of fluid-enriched mantle (EMI), while volcanics from the Kuril basin were generated from mantle enriched in continental crust matter (EMU). In spite of different conditions of their genesis, they have some common geochemical features, in particular, their calc-alkaline signatures. These traces of influence of the sialic crust on magma generation confirm development of the basins of both these seas on the continental basement.
Resumo:
We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.
Resumo:
An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.
Resumo:
The northwest trending walls of the Pito Deep Rift (PDR), a tectonic window in the southeast Pacific, expose in situ oceanic crust generated ?3 Ma at the superfast spreading southern East Pacific Rise (SEPR). Whole rock analyses were performed on over 200 samples of dikes and lavas recovered from two ~8 km**2 study areas. Most of the PDR samples are incompatible-element-depleted normal mid-ocean ridge basalts (NMORB; (La/Sm)N < 1.0) that show typical tholeiitic fractionation trends. Correlated variations in Pb isotope ratios, rare earth element patterns, and ratios of incompatible elements (e.g., (Ce/Yb)N) are best explained by mixing curves between two enriched and one depleted mantle sources. Pb isotope compositions of most PDR NMORB are offset from SEPR data toward higher values of 207Pb/204Pb, suggesting that an enriched component of the mantle was present in this region in the past ?3 Ma but is not evident today. Overall, the PDR crust is highly variable in composition over long and short spatial scales, demonstrating that chemically distinct lavas and dikes can be emplaced within the same segment over short timescales. However, the limited spatial distribution of high 206Pb/204Pb samples and the occurrence of relatively homogeneous MgO compositions (ranging <2.5 wt %) within a few of the individual dive transects (over distances of ~1 km) suggests that the mantle source composition evolved and magmatic temperatures persisted over timescales of tens of thousands of years. The high degree of chemical variability between pairs of adjacent dikes is interpreted as evidence for along-axis transport of magma from chemically distinct portions of the melt lens. Our findings suggest that lateral dike propagation occurs to a significant degree at superfast spreading centers.
Resumo:
Thirteen sediment samples, including calcareous ooze, sandy clay, volcanic sand, gravel, and volcanic breccia, from Ocean Drilling Program (ODP) Sites 732B, 734B, 734G and Conrad Cruise 27-9, Station 17, were examined. Contents of major and trace elements were determined using XRF or ICP (on samples <0.5 g). Determinations of rare earth elements (REE) were performed using ICP-MS. Mineralogy was determined using XRD. On the basis of the samples studied, the sediments accumulating in the Atlantis II Fracture Zone are characterized by generally high MgO, Cr, and Ni contents compared with other deep-sea sediments. A variety of sources are reflected in the mineralogy and geochemistry of these sediments. Serpentine, brucite, magnetite, and high MgO, Cr, and Ni contents indicate derivation from ultramafic basement. The occurrence of albite, analcime, primary mafic minerals, and smectite/chlorite in some samples, coupled with high SiO2, Al2O3, TiO2, Fe2O3, V, and Y indicate contribution from basaltic basement. A third major sediment source is characterized as biogenic material and is reflected primarily in the presence of carbonate minerals, and high CaO, Sr, Pb, and Zn in certain samples. Kaolinite, illite, quartz, and some chlorite are most likely derived from continental areas or other parts of the ocean by long-distance sediment transport in surface or other ocean currents. Proportions of source materials in the sediments reflect the thickness of the sediment cover, slope of the seafloor, and the nature of and proximity to basement lithologies. REE values are low compared to other deep-sea sediments and indicate no evidence of hydrothermal activity in the Atlantis II Fracture Zone sediments. This is supported by major- and trace-element data.