921 resultados para Landau parameter
Resumo:
The influence of in-medium nucleon-nucleon cross section on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-40 and Ca-60 + Ca-40; Sn-112 + Sn-112 and Sn-124 + Sn-124 within the isospin dependent quantum molecular dynamics. The calculated result shows that the influence of the in-medium nucleon-nucleon cross section on the isoscaling parameter a is mainly determined by the corresponding number of collisions, both for isospin dependent and isospin independent parameterizations. The mechanisms behind the effects of the in-medium nucleon-nucleon cross sections on the alpha are investigated in more details.
Resumo:
The medium effect of nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two central nuclear reactions Ca-40+Ca-40, Ca-60+Ca-60. within isospin-dependent quantum molecular dynamics at beam energies from 40 to 50 MeV/nucleon. It is found that there is the very obvious medium effects of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) on the isoscaling parameters a. In this case the isoscaling parameter a is a possible probe of the medium effect of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) in the heavy ion collisions. The mechanism of the above-mentioned properties is studied and discussed.
Resumo:
The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.
Resumo:
Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.
Resumo:
A minicapillary viscometer utilizing <0.5 ml of sample at a volume fraction of <0.1% is described. The calculated a/b of DPPC/DPPG multilamellar liposome was 1.14 as prolate ellipsoids and a/b of dioleoylpropyltrimethyl ammonium methylsulfate-DNA complex at a charge ratio of 4: 1 (+/-) was 3.7 as prolate ellipsoids or 4.9 as oblate ellipsoids. The deviation of shape from perfect sphere is thus expressed quantitatively in more than two significant figures. In these measurement, the necessary amount of DNA is <0.5 mg.
Resumo:
The remote sensing based Production Efficiency Models (PEMs), springs from the concept of "Light Use Efficiency" and has been applied more and more in estimating terrestrial Net Primary Productivity (NPP) regionally and globally. However, global NPP estimates vary greatly among different models in different data sources and handling methods. Because direct observation or measurement of NPP is unavailable at global scale, the precision and reliability of the models cannot be guaranteed. Though, there are ways to improve the accuracy of the models from input parameters. In this study, five remote sensing based PEMs have been compared: CASA, GLO-PEM, TURC, SDBM and VPM. We divided input parameters into three categories, and analyzed the uncertainty of (1) vegetation distribution, (2) fraction of photosynthetically active radiation absorbed by the canopy (fPAR) and (3) light use efficiency (e). Ground measurements of Hulunbeier typical grassland and meteorology measurements were introduced for accuracy evaluation. Results show that a real-time, more accurate vegetation distribution could significantly affect the accuracy of the models, since it's applied directly or indirectly in all models and affects other parameters simultaneously. Higher spatial and spectral resolution remote sensing data may reduce uncertainty of fPAR up to 51.3%, which is essential to improve model accuracy.
Resumo:
In order to understand the coarsening of microdomains in symmetric diblock copolymers at the late stage, a model for block copolymers is proposed. By incorporating the self consistent field theory with the free energy approach Lattice Boltzmann model, hydrodynamic interactions can be considered. Compared with models based on Ginzburg-Landau free energy, this model does not employ phenomenological free energies to describe systems. The model is verified by comparing the simulation results obtained using this method with those of a dynamical version of the self consistent mean field theory. After that,the growth exponents of the characteristic domain size for symmetric block copolymers at late stage are studied. It is found that the viscosity of the system affects the growth exponents greatly, although the growth exponents are all less than 1/3 Furthermore, the relations between the growth exponent, the interaction parameter and the chain length are studied.
Resumo:
The chain-length dependence of the Flory-Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer-blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables r(n), r(w), r(z), and chain-length distribution, have effects on the spinodals for polydisperse polymer blends.
Resumo:
The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.
Resumo:
Heritability and genetic and phenotypic correlations were estimated for juvenile growth traits of Pacific abalone Haliotis discus hannai Ino. The estimates were calculated from shell length and shell width measurements on progeny resulting from 12 half-sib families and 36 full-sib families obtained using artificial fertilization of mating three females to each male. The measurements were taken at 10, 20 and 30 d after fertilization. It was found that heritability estimates based on sire component ranged from 0.23 to 0.36 for shell length and 0.21 to 0.32 for shell width. Heritability estimates from dam component were larger than those from sire component at three ages, indicating presence of maternal effects, non-additive genetic effects and common environmental effects. Phenotypic correlations were significant at three ages (P < 0.05), with values of 0.92, 0.93 and 0.92, respectively. Genetic correlations from the paternal half-sib correlation analysis were highly positive at three ages, with values of 0.50, 0.78 and 0.81, respectively. The results suggest that selective breeding is an effective approach to improving growth traits of Pacific abalone stocks.
Resumo:
Orthogonal design and uniform design were used for the optimization of separation of enantiomers using 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CD) as a chiral selector by capillary zone electrophoresis, The concentration of DM-beta-CD, buffer pH, running voltage, and capillary temperature were selected as variable parameters, their different effects on peak resolution were studied by the design methods. It was concluded that orthogonal design offers a rapid and efficient means for testing the importance of individual parameters and for determining the optimum operating conditions. However, for a large number of both factors and levels, uniform design is more efficient, The effect of addition of methanol and citric acid buffer on the separation of enantiomers was also examined.