994 resultados para Land plants
Resumo:
The snap-trap leaves of the aquatic waterwheel plant (Aldrovanda) resemble those of Venus' flytrap (Dionaea), its distribution and habit are reminiscent of bladderworts (Utricularia), but it shares many reproductive characters with sundews (Drosera). Moreover, Aldrovanda has never been included in molecular phylogenetic studies, so it has been unclear whether snap-traps evolved only once or more than once among angiosperms. Using sequences from nuclear 18S and plastid rbcL, atpB, and matK genes, we show that Aldrovanda is sister to Dionaea, and this pair is sister to Drosera. Our results indicate that snap-traps are derived from flypaper-traps and have a common ancestry among flowering plants, despite the fact that this mechanism is used by both a terrestrial species and an aquatic one. Genetic and fossil evidence for the close relationship between these unique and threatened organisms indicate that carnivory evolved from a common ancestor within this caryophyllid clade at least 65 million years ago.
Resumo:
Canola (Brassica napus L.) and sunflower (Helianthus annuus L.), two important oilseed crops, are sensitive to low boron (B) supply. Symptoms of B deficiency are often more severe during the reproductive stage, but it is not known if this is due to a decreased external B supply with time or an increased sensitivity to low B during this stage. Canola and sunflower were grown for 75 days after transplanting (DAT) in two solution culture experiments using Amberlite (IRA-743) B-specific resin to maintain constant B concentration in solution over the range 0.6 - 53 muM. Initially, the vegetative growth of both crops was good in all treatments. With the onset of the reproductive stage, however, severe B deficiency symptoms developed and growth of canola and sunflower was reduced with less than or equal to 0.9 and less than or equal to 0.7 muM B, respectively. At these concentrations, reproductive parts failed to develop. The critical B concentration (i.e. 90% of maximum shoot dry matter yield) in the youngest opened leaf was 18 mg kg(-1) in canola and 25 mg kg(-1) in sunflower at 75 DAT. The results of this study indicate that the reproductive stage of these two oilseed crops is more sensitive than the vegetative stage to low B supply.
Resumo:
Vegetation monitoring is essential to evaluate management and assess condition. However, methods that have been used cannot assess the viability of the community or provide indicators of future condition. Seed traps can be used to measure reproductive potential of a vegetation community via seed rain. This study evaluates three different seed-trap designs and compares their effectiveness in terms of the diversity and abundance of seed captured, the presence of seed-predating insects, cost, manufacturing ease and serviceability. Field trials were conducted in open, grassy woodlands in south-western and south-eastern Queensland. The results showed that the tall funnel-trap design was the least effective, while the wet wind trap and pitfall funnel trap proved more effective. On the basis of the results of this study, further investigations are recommended for testing trap performance in different vegetation communities, seed predation in relation to seed production and variation in seed production over time. Seed traps that monitor seed rain are potentially useful in assessing the health and viability of a vegetation community. Used in conjunction with other monitoring methods, they may offer valuable insights about the dynamics of entire communities and/or individual species, and therefore appropriate management strategies.
Resumo:
Circular disulfide-rich polypeptides were unknown a decade ago but over recent years a large family of such molecules has been discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bonds arranged in a cystine knot motif. In this motif, an embedded ring in the structure formed by two disulfide bonds and their connecting backbone segments is penetrated by the third disulfide bond. The combination of this knotted and strongly braced structure with a circular backbone renders the cyclotides impervious to enzymatic breakdown and makes them exceptionally stable. This article describes the discovery of the cyclotides in plants from the Rubiaceae and Violaceae families, their chemical synthesis, folding, structural characterisation, and biosynthetic origin. The cyclotides have a diverse range of biological applications, ranging from uterotonic action, to anti-HIV and neurotensin antagonism. Certain plants from which they are derived have a history of uses in native medicine, with activity being observed after oral ingestion of a tea made from the plants. This suggests the possibility that the cyclotides may be orally bioavailable. They therefore have a range of potential applications as a stable peptide framework.
Resumo:
The influence of change in land-use from native vegetation to pasture (20-71 yr after conversion), and subsequent change from pasture to eucalypt plantation (7-10 yr after conversion) on soil organic matter quality was investigated using C-13 CP/MAS NMR spectroscopy. We studied surface soil (0-10 cm) from six sites representing a range of soil, and climate types from south-western Australia. Total C in the samples ranged from 1.6 to 5.5%, but the relative proportions of the four primary spectral regions (alkyl, O-alkyl, aromatic and carboxylic) were similar across the sites, and changes due to land-use at each site were relatively minor. Main impacts of changed land-use were higher O-alkyl (carbohydrate) material under pasture than under native vegetation and plantation (P = 0.048), and lower aromatic C under pasture than under native vegetation (P = 0.027). The decrease in aromatic C in pasture soils was related to time since clearing. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Science communication. including extension services. plays a key role in achieving sustainable native vegetation management. One of the pivotal aspects of the debate on sustainable vegetation management is the scientific information underpinning policy-making. In recent years. extension services have Shifted their focus from top-down technology transfer to bottom-up participation and empowerment. I here has also been a broadening of communication strategies to recognise the range of stakeholders involved in native vegetation management and to encompass environmental concerns. This paper examines the differences between government approaches to extension services to deliver policy and the need for effective communication to address broader science issues that underpin native vegetation management. The importance of knowing the learning styles of the stakeholders involved in native vegetation management is discussed at a time of increasing reliance on mass communication for information exchange and the importance of personal communication to achieve on-ground sustainable management. Critical factors for effective science-management communication are identified Such as: (i) undertaking scientific studies (research) with community involvement, acceptance and agreed understanding of project objectives (ii) realistic community consultation periods: (iii) matching communication channels with stakeholder needs; (iv) combining scientific with local knowledge in in holistic (biophysical and social) approach to understanding in issued and (v) regional partnerships. These communication factors are considered to be essential to implementing on-ground natural resource management strategics and actions, including those concerned with native vegetation management.
Resumo:
Transient gene expression assays are often used to screen promoters before stable transformation. Current transient quantification methods have several problems, including a lack of reporter gene stability and expense. Here we report a synthetic, codon-optimised xylanase gene (sXynA) as a reporter gene for quantitative transient analyses in plants. Azurine-crosslinked xylan (AZCL-xylan) was used as a substrate for assaying xylanase activity. The enzymatic nature of the protein allows for sensitive assays at the low levels of transgene protein found in transiently transformed tissue extracts. The xylanase (XYN) protein is stable, activity slopes are linear over long time periods and assays are cost-effective. Coupled with the GUSPlus reporter gene, the XYN reporter allows sensitive and accurate quantification of gene control sequences in transient expression systems.
Resumo:
Little is known about causes of endemic rarity in plants. This study pioneered an approach that determined environmental variables in the rainforest habitat and generated physiological profiles for light, water, and nutrient relations for three endemically restricted versus widespread congeneric species' pairs. We found no overall consistent differences in the physiological variables between the group of restricted species and the group of widespread species, and congeneric species pairs were therefore examined individually. Availability of soil nutrients did not differ between restricted-widespread species sites suggesting that species grow under comparable nutrient conditions. Under ambient and manipulated higher light conditions, widespread Gardenia ovularis had a greater photosynthetic activity than restricted Gardenia actinocarpa suggesting that the two species differ in their photosynthetic abilities. Differences between Xanthostemon species included lower photosynthetic activity, higher transpiration rate, and a higher foliar manganese concentration in restricted Xanthostemon formosus compared to widespread Xanthostemon chrysanthus. It is suggested that X. formosus is restricted by its high water use to its current rainforest creek edge habitat, while X. chrysanthus grows in a range of environments, although naturally found in riparian rainforest. Restricted Archidendron kanisii had higher electron transport rates, greater dissipative capacity for removal of excess light, and more efficient investment of nitrogen into photosynthetic components, than its widespread relative Archidendron whitei. These observations and previous research suggest that restricted Archidendron kanisii is in the process of expanding its range. Physiological profiles suggest a different cause of rarity for each species. This has implications for the conservation strategies required for each species. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Habitat instability associated with seasonal crop succession in broad-acre farming systems presents a problem for the conservation and utilisation of beneficial insects in annual field crops. The present paper describes two experiments used to measure the potential of seven plant species to be utilised as winter refuges to support and conserve the predatory bug Pristhesancus plagipennis (Walker). In the first experiment, replicated plots of canola (Brassica napus ), red salvia (Salvia coccinea ), niger (Guizotia abyssinica ), linseed (Linum usitatissimum ), lupins (Lupinus angustifolius ), and lucerne (Medicago falcata ) were planted in a randomized experiment during Autumn 1998. Upon crop establishment, adults and nymphs of P. plagipennis were released into treatment plots and their numbers were assessed, along with those of their potential prey, throughout the ensuing winter months. Post-release sampling suggested that canola and niger retained a proportion of adult P. plagipennis , while niger, lucerne and canola retained some nymphs. The other plant species failed to support P. plagipennis nymphs and adults postrelease. In the second experiment, niger was compared with two lines of sunflower (Helianthus annus ). Both sunflower lines harboured significantly higher (P < 0.05) densities of P. plagipennis nymphs than did niger. The more successful refuge treatments (sunflower, niger and canola) had an abundance of yellow flowers that were attractive to pollinating insects, which served as supplementary prey on which P. plagipennis were observed to feed. Sunflower and niger also supported high densities of the prey insect Creontiades dilutus (Stal) and provided protective leafy canopies which supplied shelter during the winter months. The potential and limitations for using each plant species as a winter refuge to retain P. plagipennis during winter are discussed.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
This paper examines the influence of the chemical constituents of activated sludge and extracted extracellular polymeric substances (EPS) on the surface properties, hydrophobicity, surface charge (SC) and flocculating ability (FA) of activated sludge floes. Activated sludge samples from 7 different full-scale wastewater treatment plants were examined. Protein and humic substances were found to be the dominant polymeric compounds in the activated sludges and the extracted EPS, and they significantly affected the FA and surface properties, hydrophobicity and SC, of the sludge floes. The polymeric compounds proteins, humic substances and carbohydrates in the sludge floes and the extracted EPS contributed to the negative SC, but correlated negatively to the hydrophobicity of sludge floes. The quantity of protein and carbohydrate within the sludge and the extracted EPS was correlated positively to the FA of the sludge floes, while increased amounts of humic substances resulted in lower FA. In contrast, increased amounts of total extracted EPS had a negative correlation to FA. The results reveal that the quality and quantity of the polymeric compounds within the sludge floes is more informative, with respect to understanding the mechanisms involved in flocculation, than if only the extracted EPS are considered. This is an important finding as it indicates that extracting EPS may be insufficient to characterise the EPS. This is due to the low extraction efficiency and difficulties involved in the separation of EPS from other organic compounds. Correlations were observed between the surface properties and FA of the sludge floes., This confirms that the surface properties of the, sludge flocs play an important role in the bioflocculation process but that also other interactions like polymer entanglement are important. (C) 2002 Elsevier Science Ltd. All rights reserved.