647 resultados para Lactobacillus helveticus
Resumo:
Objective: To evaluate the bifidogenic efficacy of two inulin doses in healthy human adults. Design: A double-blind, placebo-controlled, crossover human study. Setting: Food Microbial Sciences Unit, The University of Reading, Reading, UK. Subjects: Thirty healthy volunteers, 15 men, 15 women ( age range 19-35). Interventions: Subjects consumed a chocolate drink containing placebo ( maltodextrin, 8 g/day), 5 g/day inulin and 8 g/day inulin for a 2-week treatment period. Each treatment was followed by a 1-week washout at the end of which volunteers progressed to the next treatment. Faecal samples were obtained at the start of the study ( baseline) and at the end of each treatment and washout period. Fluorescent in situ hybridization was used to monitor populations of Bifidobacterium genus, Bacteroides - Prevotella, Lactobacillus - Enterococcus and Clostridium perfringens - histolyticum subgroup. Results: Bifidobacterial levels increased significantly upon ingestion of both the low ( 9.78 +/- 0.29 log(10) cells/g faeces, P < 0.05) and the high inulin dose ( 9.79 +/- 0.38 log(10) cells/g faeces, P < 0.05) compared to placebo ( 9.64 +/- 0.23 log(10) cells/g faeces). Conclusions: Both inulin doses exhibited a bifidogenic effect but a higher volunteer percentage responded to the high dose. A dose response effect was not observed but the magnitude of increase in bifidobacteria levels depended on their initial numbers. The higher the initial concentrations the smaller was the increase upon ingestion of the active treatments. Sponsorship: Financial support for the completion of this project was provided by Sensus ( Roosendaal, The Netherlands).
Resumo:
Insulin is a prebiotic food ingredient, which suppresses colon tumour growth and development in rats. In the gut lumen, it is fermented to lactic acid and short chain fatty acids (SCFA). Of these, butyrate has suppressing agent activities, but little is known concerning cellular responses to complex fermentation samples. To investigate the effects of fermentation products of insulin on cellular responses related to colon carcinogenesis. Fermentations were performed in anaerobic batch cultures or in a three-stage fermentation model that simulates conditions in colon-segments (proximal, transverse, distal). Substrate was insulin enriched with oligofructose (Raftilose® Synergy1), fermented with probiotics (Bifidobacterium lactis Bb12, Lactobacillus rhamnosus GG), and/or faecal inocula. HT29 or CaCo-2 cells were incubated with supernatants of the fermented samples (2.5%-25% v/v, 24-72 hours). Cellular parameters of survival, differentiation, tumour progression, and invasive growth were determined. Fermentation supernatants derived from probiotics and Synergy1 were more effective than with glucose. The additional fermentation with faecal slurries produced supernatants with lower toxicity, higher SCFA contents, and distinct cellular functions. The supernatant derived from the gut model vessel representing the distal colon, was most effective for all parameters, probably on account of higher butyrate-concentrations. Biological effects of insulin upon colon cells may be mediated not only by growth stimulation of the lactic acid-producing bacteria and/or production of butyrate, but also by other bacteria and products of the gut lumen. These newly reported properties of the supernatants to inhibit growth and metastases in colon tumour cells are important mechanisms of tumour suppression.
Resumo:
Inflammatory bowel disease (IBD) is a common cause of chronic large bowel diarrhoea in cats. Although the aetiology of IBD is unknown, an immune-mediated response to a luminal antigen is thought to be involved. As knowledge concerning the colonic microflora of cats is limited and requires further investigation, the purpose of this study was to determine the presence of specific bacterial groups in normal and IBD cats, and the potential role they play in the health of the host. Total bacterial populations, Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum subgp., Lactobacillus-Enterococcus subgp. and Desulfovibrio spp. were enumerated in 34 healthy cats and 11 IBD cats using fluorescence in situ hybridisation. The study is one of the first to show the presence of Desulfovibrio in cats. Total bacteria, Bifidobacterium spp. and Bacteroides spp. counts were all significantly higher in healthy cats when compared with IBD cats, whereas Desulfovibrio spp. (producers of toxic sulphides) numbers were found to be significantly higher in colitic cats. The information obtained from this study suggests that modulation of bacterial flora by increasing bifidobacteria and decreasing Desulfovibrio spp. may be beneficial to cats with IBD. Dietary intervention may be an important aspect of their treatment.
Resumo:
Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.
Resumo:
Clostridium difficile infection is a frequent complication of antibiotic therapy in hospitalised patients, which today is attracting more attention than ever and has led to its classification as a 'superbug'. Disruption of the composition of the intestinal microflora following antibiotic treatment is an important prerequisite for overgrowth of C. difficile and the subsequent development of an infection. Treatment options for antibiotic-associated diarrhoea and C. difficile-induced colitis include administration of specific antibiotics (e.g. vancomycin), which often leads to high relapse rates. More importantly, both the rate and severity of C. difficile-associated diseases are increasing, with new epidemic strains of C. difficile often implicated. For the prevention and treatment of antibiotic-associated diarrhoea and C. difficile infection, several probiotic bacteria such as selected strains of lactobacilli (especially Lactobacillus rhamnosus GG), Bifidobacterium longum, and Enterococcus faecium and the non-pathogenic yeast Saccharomyces boulardii have been used. Controlled trials indicate a benefit of S. boulardii and L. rhamnosus GG as therapeutic agents when used as adjuncts to antibiotics. However, the need for more well designed controlled trials with probiotics is explicit.
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Prebiotics and probiotics are increasingly being used to produce potentially synbiotic foods, particularly through dairy products as vehicles. It is well known that both ingredients may offer benefits to improve the host health. This research aimed to evaluate the prebiotic potential of novel petit-suisse cheeses using an in vitro fermentation model. Five petit-suisse cheese formulations combining candidate prebiotics (inulin. oligofructose. hone) and probiotics (Lactobacillus acidophilus, Bifidobacterium lactis) were tested in vitro using, sterile. stirred, batch culture fermentations with human faecal slurry. Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and production of lactate and short chain fatty acids. Fastest fermentation and high lactic acid production, promoting increased growth rates of bifidobacteria and lactobacilli. were achieved with addition of prebiotics to a probiotic cheese (made using starter + probiotics). Addition of probiotic strains to control cheese (made using just a starter culture) also resulted in high lactic acid production. Highest MPE values were obtained with addition of prebiotics to a probiotic cheese, followed by addition of prebiotics and/or probiotics to a control cheese. Under the in vitro conditions used, cheese made with the combination of different prebiotics and probiotics resulted in the most promising functional petit-suisse cheese. The study allowed comparison of potentially functional petit-suisse cheeses and screening of preferred synbiotic potential for future market use. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ulcerative colitis is a severe, relapsing and remitting disease of the human large intestine characterised by inflammation of the mucosa and submucosa. The main site of disease is the sigmoid/rectal region of the large bowel but the aetiology remains unknown. There is considerable evidence to indicate that the components of the resident colonic microflora can play an important role in initiation of the disease. The present study was aimed at characterising the faecal microflora of ulcerative colitis patients in remission and active phases to determine profile differences. Faecal samples were obtained from 12 patients, 6 with active colitis and 6 in remission. The samples were analysed for populations of lactobacilli, bifidobacteria, clostridia, bacteroides, sulphate-reducing bacteria (SRB) and total bacteria using culture independent fluorescence in situ hybridisation (FISH). Lactobacillus-specific denaturing gradient gel electrophoresis (DGGE) was then performed to compare the species present. Numbers of lactobacilli were significantly lower (p<0.05) during the active phase of the disease but the other populations tested did not differ. DGGE analysis revealed that Lactobacillus salivarus, Lactobacillus manihotivorans and Pediococcus acidilactici were present in remission, but not during active inflammation. These results imply that a reduction in intestinal Lactobacillus species may be important in the initiation of ulcerative colitis.
Resumo:
The aim of the study was to evaluate whether supplementation of milk-formulas with prebiotic fructooligosaccharides or a probiotic, Lactobacillus johnsonii La1 (La1), could modulate the composition of the fecal microbiota of formula-fed infants, compared to breastfed (BF) infants. Ninety infants close to 4 months of age were randomized into one of three groups to be blindly assigned to receive for 13 weeks: a) an infant formula (Control), b) the same formula with fructo-oligosaccharides (Prebio), or c) with La1 (Probio). At the end of this period, all infants received the control formula for 2 additional weeks. Twenty-six infants, breastfed throughout the study, were recruited to form group BF. Fecal samples were obtained upon enrolment and after 7 and 15 weeks. Bacterial populations were assessed with classical culture techniques and fluorescent in situ hybridisation (FISH). Seventy-six infants completed the study. On enrolment, higher counts of Bifidobacterium and Lactobacillus and lower counts of enterobacteria were observed in BF compared to the formula-fed infants; these differences tended to disappear at weeks 7 and 15. No major differences for Clostridium, Bacteroides or Enterococcus were observed between the groups or along the follow up. Probio increased fecal Lactobacillus counts (P<0.001); 88% of the infants in this group excreted live La1 in their stools at week 7 but only 17% at week 15. Increased Bifidobacterium counts were observed at week 7 in the 3 formula groups, similar to BF infants. These results confirm the presence of higher counts of bifidobacteria and lactobacilli in the microbiota of BF infants compared to formula-fed infants before dietary diversification, and that La1 survives in the infant digestive tract.
Resumo:
Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.
Resumo:
The influence of adjunct brine cultures on the volatile compounds in Feta-type cheeses made from bovine milk was studied. Four batches of brine were produced: one with no added adjuncts, a second containing Lactobacillus paracasei subsp. paracasei, a third containing Lb. paracasei subsp. paracasei plus Debaryomyces hansenii and a fourth with Lb. paracasei subsp. paracasei plus Yarrowia lipolytica. All the cultures were isolated from commercial Feta brines. Aroma compounds were analysed by dynamic headspace analysis, on-line coupled with GC/MS. The most important volatile compounds were quantified in the experimental cheeses; it was concluded that the use of Lb. paracasei subsp. paracasei and D. hansenii as adjuncts in the manufacture of Feta-type cheeses contribute to the formation of a richer pattern of aroma compounds, namely alcohols, aldehydes and esters. The inclusion of Y. lipolytica resulted in the production of undesirable aroma compounds that are not part of the usual volatile profile of high quality Feta cheeses. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The induction of apoptosis in mammalian cells by bacteria is well reported. This process may assist infection by pathogens whereas for non-pathogens apoptosis induction within carcinoma cells protects against colon cancer. Here, apoptosis induction by a major new gut bacterium, Atopobium minutum, was compared with induction by commensal (Escherichia coli K-12 strains), probiotic (Lactobacillus rhamnosus, Bifidobacterium latis) and pathogenic (E. coli: EPEC and VTEC) gut bacteria within the colon cancer cell line, Caco-2. The results show a major apoptotic effect for the pathogens, mild effects for the probiotic strains and A. minutum, but no effect for commensal E. coli. The mild apoptotic effects observed are consistent with the beneficial roles of probotics in protection against colon cancer and suggest, for the first time, that A. minutum possesses similar advantageous, anti-cancerous activity. Although bacterial infection increased Caco-2 membrane FAS levels, caspase-8 was not activated indicating that apoptosis is FAS independent. Instead, in all cases, apoptosis was induced through the mitochondrial pathway as indicated by BAX translocation, cytorchrome c release, and caspase-9 and -3 cleavage. This suggests that an intracellular stimulus initiates the observed apoptosis responses.
Resumo:
Diarrhoea is a common problem in dogs and can result in disturbance of the normal intestinal microbiota. However, little is known about the gastrointestinal microbiota of dogs with chronic diarrhoea and controlled canine studies of dietary management are scarce. The aims of this study were to investigate the predominant faecal microbiota of chronic diarrhoea dogs and to examine the effect(s) of a fibre blend on the canine faecal microbiota. A 3-week fibre supplementation feeding study was performed in nine chronic diarrhoea and eight control dogs. Atopobium cluster, Lactobacillus-Enterococcus group and Clostridium cluster XIV were the predominant bacterial groups in all dogs. Chronic diarrhoea dogs had significantly higher Bacteroides counts at baseline and significantly lower Atopobium cluster counts following fibre supplementation compared with control dogs. Atopobium cluster levels increased significantly in control dogs, while counts of sulphate-reducing bacteria decreased significantly and Clostridium clusters I and II counts increased significantly in chronic diarrhoea dogs during fibre supplementation. Microbial profiles (detected by denaturing gradient gel electrophoresis) demonstrated interindividual variation, with greater similarity seen between the chronic diarrhoea and control dogs' profiles after fibre supplementation compared with baseline. In conclusion, fibre supplementation induced changes in the canine faecal microbiota, with greater resemblance between the microbiota of chronic diarrhoea and control dogs after this dietary modulation.
Resumo:
There is growing interest in the role of gastrointestinal (GI) pathology and clinical expression of autism. Recent studies have demonstrated differences in the faecal clostridial populations harboured by autistic and non-autistic children. The potential of Lactobacillus plantarum WCSF1 (a probiotic) to modulate the gut microbiota of autistic subjects was investigated during a double-blind, placebo-controlled, crossover-designed feeding study. The faecal microbiota, gut function and behaviour scores of subjects were examined throughout the 12-week study. Lactobacillus plantarum WCFS1 feeding significantly increased Lab158 counts (lactobacilli and enterococci group) and significantly reduced Erec482 counts (Clostridium cluster XIVa) compared to placebo. Probiotic feeding also resulted in significant differences in the stool consistency compared to placebo and behaviour scores (total score and scores for some subscales) compared to baseline. The major finding of this work was the importance of study protocol in relation to the specific considerations of this subject population, with an extremely high dropout rate seen (predominantly during the baseline period). Furthermore, the relatively high inter-individual variability observed suggests that subsequent studies should use defined subgroups of autistic spectrum disorders, such as regressive or late-onset autism. In summary, the current study has highlighted the potential benefit of L. plantarum WCFS1 probiotic feeding in autistic individuals.
Resumo:
The present study aimed to determine the prebiotic effect of fruit and vegetable shots containing inulin derived from Jerusalem artichoke (JA). A three-arm parallel, placebo-controlled, double-blind study was carried out with sixty-six healthy human volunteers (thirty-three men and thirty-three women, age range: 18–50 years). Subjects were randomised into three groups (n 22) assigned to consume either the test shots, pear-carrot-sea buckthorn (PCS) or plum-pear-beetroot (PPB), containing JA inulin (5 g/d) or the placebo. Fluorescent in situ hybridisation was used to monitor populations of total bacteria, bacteroides, bifidobacteria, Clostridium perfringens/histolyticum subgroup, Eubacterium rectale/Clostridium coccoides group, Lactobacillus/Enterococcus spp., Atopobium spp., Faecalibacterium prausnitzii and propionibacteria. Bifidobacteria levels were significantly higher on consumption of both the PCS and PPB shots (10·0 (sd 0·24) and 9·8 (sd 0·22) log10 cells/g faeces, respectively) compared with placebo (9·3 (sd 0·42) log10 cells/g faeces) (P < 0·0001). A small though significant increase in Lactobacillus/Enterococcus group was also observed for both the PCS and PPB shots (8·3 (sd 0·49) and 8·3 (sd 0·36) log10 cells/g faeces, respectively) compared with placebo (8·1 (sd 0·37) log10 cells/g faeces) (P = 0·042). Other bacterial groups and faecal SCFA concentrations remained unaffected. No extremities were seen in the adverse events, medication or bowel habits. A slight significant increase in flatulence was reported in the subjects consuming the PCS and PPB shots compared with placebo, but overall flatulence levels remained mild. A very high level of compliance (>90 %) to the product was observed. The present study confirms the prebiotic efficacy of fruit and vegetable shots containing JA inulin.