987 resultados para LINEAR ELASTIC FRACTURE MECHANICS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a known fact in structural optimization that for structures subject to prescribed non-zero displacements the work done by the loads is not agood measure of compliance, neither is the stored elastic energy. We briefly discuss a possible alternative measure of compliance, valid for general boundary conditions. We also present the adjoint states (necessary for the computation of the structural derivative) for the three functionals under consideration. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandwich geometries, mainly in the form of panels and beams, are commonly applied in various transportation industries, such as aerospace, aeronautic and automotive. Sandwich geometries represent important advantages in structural applications, namely high specific stiffness, low weight, and possibility of design optimization prior to manufacturing. The aim of this paper is to uncover the influence of the number of reinforcements (ribs), and of the thickness on the mechanical behavior of all-metal sandwich panels subjected to uncoupled bending and torsion loadings. In this study, four geometries are compared. The orientation of the reinforcements and the effect of transversal ribs are also considered in this study. It is shown that the all the relations are non-linear, despite the elastic nature of the analysis in the Finite Element software ANSYS MECHANICAL APDL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mo-Si-B alloys, Real microstructures, Voronoi structures, Microstructural characterization, Modelling and finite element simulations, Effective material properties, Damage and Crack growth, tensile strength, fracture toughness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An online algorithm for determining respiratory mechanics in patients using non-invasive ventilation (NIV) in pressure support mode was developed and embedded in a ventilator system. Based on multiple linear regression (MLR) of respiratory data, the algorithm was tested on a patient bench model under conditions with and without leak and simulating a variety of mechanics. Bland-Altman analysis indicates reliable measures of compliance across the clinical range of interest (± 11-18% limits of agreement). Resistance measures showed large quantitative errors (30-50%), however, it was still possible to qualitatively distinguish between normal and obstructive resistances. This outcome provides clinically significant information for ventilator titration and patient management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decade several new techniques for the treatment of children's fractures respecting the specificity of the growing bone have been described. The goal of all these techniques was to mechanically stabilise the fracture however to preserve a certain instability of the fracture gap itself inducing early callus formation and subsequent consolidation. The dynamic external fixation as well as the elastic stable intramedullary pinning have become accepted means in the treatment of long bone fractures in the paediatric age group. We report our experience of the last seven years with the intramedullary pinning of 105 fractures. Eighty-four were fractures of the femur, 9 of the humerus, 8 of the forearm, and a further 4 of the tibial shaft. The intramedullary elastic pinning represents a simple technique which supports or even enhances the natural process of fracture healing of the growing bone. The method is not very invasive, is cost effective, and allows short hospitalisation. Early physical activity is guaranteed due to early consolidation of the fracture. Complications are rare and the final orthopedic and cosmetic outcome is excellent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the association of trabecular bone score (TBS) with microarchitecture and mechanical behavior of human lumbar vertebrae. We found that TBS reflects vertebral trabecular microarchitecture and is an independent predictor of vertebral mechanics. However, the addition of TBS to areal BMD (aBMD) did not significantly improve prediction of vertebral strength. INTRODUCTION: The trabecular bone score (TBS) is a gray-level measure of texture using a modified experimental variogram which can be extracted from dual-energy X-ray absorptiometry (DXA) images. The current study aimed to confirm whether TBS is associated with trabecular microarchitecture and mechanics of human lumbar vertebrae, and if its combination with BMD improves prediction of fracture risk. METHODS: Lumbar vertebrae (L3) were harvested fresh from 16 donors. The anteroposterior and lateral bone mineral content (BMC) and areal BMD (aBMD) of the vertebral body were measured using DXA; then, the TBS was extracted using TBS iNsight software (Medimaps SA, France). The trabecular bone volume (Tb.BV/tissue volume, TV), trabecular thickness (Tb.Th), degree of anisotropy, and structure model index (SMI) were measured using microcomputed tomography. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies to assess failure load and stiffness. RESULTS: The TBS was significantly correlated to Tb.BV/TV and SMI (râeuro0/00=âeuro0/000.58 and -0.62; pâeuro0/00=âeuro0/000.02, 0.01), but not related to BMC and BMD. TBS was significantly correlated with stiffness (râeuro0/00=âeuro0/000.64; pâeuro0/00=âeuro0/000.007), independently of bone mass. Using stepwise multiple regression models, we failed to demonstrate that the combination of BMD and TBS was better at explaining mechanical behavior than either variable alone. However, the combination TBS, Tb.Th, and BMC did perform better than each parameter alone, explaining 79 % of the variability in stiffness. CONCLUSIONS: In our study, TBS was associated with microarchitecture parameters and with vertebral mechanical behavior, but TBS did not improve prediction of vertebral biomechanical properties in addition to aBMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis of uniaxial stress data it is possible to obtain reliable values of third-order elastic constants in cubic metals and alloys. Cu-based shape memory alloys are used as an illustrative example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Type 2 diabetes (T2D) is associated with increased fracture risk but paradoxically greater BMD. TBS (trabecular bone score), a novel grey-level texture measurement extracted from DXA images, correlates with 3D parameters of bone micro-architecture. We evaluated the ability of lumbar spine (LS) TBS to account for the increased fracture risk in diabetes. Methods:29,407 women ≥50 years at the time of baseline hip and spine DXA were identified from a database containing all clinical BMD results for the Province of Manitoba, Canada. 2,356 of the women satisfied a well-validated definition for diabetes, the vast majority of whom (>90%) would have T2D. LS L14 TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Health service records were assessed for incident non-traumatic major osteoporotic fracture codes (mean follow-up 4.7 years). Results:In linear regression adjusted for FRAX risk factors (age,BMI, glucocorticoids, prior major fracture, rheumatoid arthritis, COPD as a smoking proxy, alcohol abuse) and osteoporosis therapy, diabetes was associated with higher BMD for LS, femoral neck and total hip but lower LS TBS (all p<0.001). Similar results were seen after excluding obese subjects withBMI>30. In logistic regression (Figure), the adjusted odds ratio (OR) for a skeletal measurement in the lowest vs highest tertile was less than 1 for all BMD measurements but increased for LS TBS (adjusted OR 2.61, 95%CI 2.30-2.97). Major osteoporotic fractures were identified in 175 (7.4%) with and 1,493 (5.5%) without diabetes (p < 0.001). LS TBS predicted fractures in those with diabetes (adjusted HR 1.27, 95%CI 1.10-1.46) and without diabetes (HR 1.31, 95%CI 1.24-1.38). LS TBS was an independent predictor of fracture (p<0.05) when further adjusted for BMD (LS, femoral neck or total hip). The explanatory effect of diabetes in the fracture prediction model was greatly reduced when LS TBS was added to the model (indicating that TBS captured a large portion of the diabetes-associated risk), but was paradoxically increased from adding any of the BMD measurements. Conclusions:Lumbar spine TBS is sensitive to skeletal deterioration in postmenopausal women with diabetes, whereas BMD is paradoxically greater. LS TBS predicts osteoporotic fractures in those with diabetes, and captures a large portion of the diabetes-associated fracture risk. Combining LS TBS with BMD incrementally improves fracture prediction.