868 resultados para LIGHT PARAFFINS
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
Purpose: The retinal balance between pro- and anti-angiogenic factors is critical for angiogenesis control, but is also involved in cell survival. We previously reported upregulation of VEGF and photoreceptor (PR) cell death in the Light-damage (LD) model. Preliminary results showed that anti-VEGF can rescue PR from cell death. Thus, we investigated the role of VEGF on the retina and we herein described the effect of anti-VEGF antibody delivered by lentiviral gene transfer in this model.Methods: To characterize the action of VEGF during the LD, we exposed Balb/c mice subretinally injected with LV-anti-VEGF, or not, to 5'000 lux for 1h. We next evaluated the retinal function, PR survival and protein expression (VEGF, VEGFR1/2, Src, PEDF, p38MAPK, Akt, Peripherin, SWL-opsin) after LD. We analyzed Blood retinal barrier (BRB) integrity on flat-mounted RPE and cryosections stained with β-catenin, ZO-1, N-cadherin and albumin.Results: Results indicate that the VEGF pathway is modulated after LD. LD leads to extravascular albumin leakage and BRB breakdown: β-catenin, ZO-1 and N-cadherin translocate to the cytoplasm of RPE cells showing loss of cell cohesion. This phenomenon is in adequacy with the VEGF time-course expression. Assessment of the retinal function reveals that PR rescue correlates with the level of LV-anti-VEGF expression. Rhodopsin content was higher in the LV-anti-VEGF group than in controls and measures of the ONL thickness indicate that LV-anti-VEGF preserves by 82% the outer nuclear layer from degeneration. Outer segments (OS) appeared well organized with an appropriate length in the LV-anti-VEGF group compared to controls, and the expression of SWL-opsin is maintained in the OS without being mislocalized as in the LV-GFP group. Finally, LV-anti-VEGF treatment prevents BRB breakdown and maintained RPE cell integrity.Conclusions: This study involves VEGF in LD and highlights the prime importance of the BRB integrity for PR survival. Taken together, these results show that anti-VEGF is neuroprotective in this model and maintains functional PR layer in LD-treated mice.
Resumo:
Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.
Resumo:
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Resumo:
This article summarizes the basic principles of light microscopy, with examples of applications in biomedicine that illustrate the capabilities of thetechnique.
Resumo:
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Resumo:
Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators.
Resumo:
Cutaneous squamous cell carcinoma (SCC) represents the most important cutaneous complication following organ transplantation. It develops mostly on sun-exposed areas. A recent study showed the role of activating transcription factor 3 (ATF3) in SCC development following treatment with calcineurin inhibitors. It has been reported that ATF3, which may act as an oncogene, is under negative calcineurin/nuclear factor of activated T cells (NFAT) control and is upregulated by calcineurin inhibitors. Still, these findings do not fully explain the preferential appearance of SCC on chronically sun-damaged skin. We analyzed the influence of UV radiation on ATF3 expression and its potential role in SCC development. We found that ATF3 is a specifically induced AP1 member in SCC of transplanted patients. Its expression was strongly potentiated by combination of cyclosporine A and UVA treatment. UVA induced ATF3 expression through reactive oxygen species-mediated nuclear factor erythroid 2-related factor 2 (NRF2) activation independently of calcineurin/NFAT inhibition. Activated NRF2 directly binds to ATF3 promoter, thus inducing its expression. These results demonstrate two mechanisms that independently induce and, when combined together, potentiate the expression of ATF3, which may then force SCC development. Taking into account the previously defined role of ATF3 in the SCC development, these findings may provide an explanation and a mechanism for the frequently observed burden on SCCs on sun-exposed areas of the skin in organ transplant recipients treated by calcineurin inhibitors.
Resumo:
Red light running continues to be a serious safety concern for many communities in the United States. The Federal Highway Administration reported that in 2011, red light running accounted for 676 fatalities nationwide. Red light running crashes at a signalized intersections are more serious, especially in high speed corridors where speeds are above 35 mph. Many communities have invested in red light countermeasures including low-cost strategies (e.g. signal backplates, targeted enforcement, signal timing adjustments and improvement with signage) to high-cost strategies (e.g. automated enforcement and intersection geometric improvements). This research study investigated intersection confirmation lights as a low-cost strategy to reduce red light running violations. Two intersections in Altoona and Waterloo, Iowa were equipped with confirmation lights which targeted the through and left turning movements. Confirmation lights enable a single police officer to monitor a specific lane of traffic downstream of the intersection. A before-after analysis was conducted in which a change in red light running violations prior to- and 1 and 3 months after installation were evaluated. A test of proportions was used to determine if the change in red light running violation rates were statistically significant at the 90 and 95 percent levels of confidence. The two treatment intersections were then compared to the changes of red light running violation rates at spillover intersections (directly adjacent to the treatment intersections) and control intersections. The results of the analysis indicated a 10 percent reduction of red light running violations in Altoona and a 299 percent increase in Waterloo at the treatment locations. Finally, the research team investigated the time into red for each observed red light running violation. The analysis indicated that many of the violations occurred less than one second into the red phase and that most of the violation occurred during or shortly after the all-red phase.
Resumo:
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.
Resumo:
In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.
Resumo:
When colonizing a new habitat, populations must adapt their sexual behaviour to new ecological constraints. Because caves display drastically different conditions from surface habitats and cave animals are deprived from visual information, hypogean populations are expected to have modified their mate preference and signalling behaviour after cave colonization. Here, we experimentally examined the female preference and the sexual behaviour of brook newts Calotriton asper from different cave and river populations, either in light or in darkness. Our results suggest that females prefer large individuals in both hypogean and epigean populations, but that this preference is only expressed in the light conditions of their native habitat. Hence, some mate choice criteria would be maintained across genetically divergent populations and throughout dissimilar habitats. However, this sexual behaviour is likely to be expressed via a different sensory pathway in the different habitats, suggesting that a sensory shift has occurred in cave populations, enabling animals to communicate through a non-visual channel.
Resumo:
Anti-idiotype antibody therapy of B-cell lymphomas, despite numerous promising experimental and clinical studies, has so far met with limited success. Tailor-made monoclonal anti-idiotype antibodies have been injected into a large series of lymphoma patients, with a few impressive complete tumour remissions but a large majority of negative responses. The results presented here suggest that, by coupling to antilymphoma idiotype antibodies a few molecules of the tetanus toxin universal epitope peptide P2 (830-843), one could markedly increase the efficiency of this therapy. We show that after 2-hr incubation with conjugates consisting of the tetanus toxin peptide P2 coupled by an S-S bridge to monoclonal antibodies directed to the lambda light chain of human immunoglobulin, human B-lymphoma cells can be specifically lysed by a CD4 T-lymphocyte clone specific for the P2 peptide. Antibody without peptide did not induce B-cell killing by the CD4 T-lymphocyte clone. The free cysteine-peptide was also able to induce lysis of the B-lymphoma target by the T-lymphocyte clone, but at a molar concentration 500 to 1000 times higher than that of the coupled peptide. Proliferation assays confirmed that the antibody-peptide conjugate was antigenically active at a much lower concentration than the free peptide. They also showed that antibody-peptide conjugates required an intact processing function of the B cell for peptide presentation, which could be selectively inhibited by leupeptin and chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)