829 resultados para LHC Ê
Resumo:
Supersymmetric theories with bilinear R-parity violation can give rise to the observed neutrino masses and mixings. One important feature of such models is that the lightest supersymmetric particle might have a sufficiently large lifetime to produce detached vertices. Working in the framework of supergravity models, we analyze the potential of the LHCb experiment to search for supersymmetric models exhibiting bilinear R-parity violation. We show that the LHCb experiment can probe a large fraction of the m(0)circle times m(1/2), being able to explore gluino masses up to 1.3 TeV. The LHCb discover potential for these kinds of models is similar to the ATLAS and CMS ones in the low luminosity phase of operation of the LHC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This chapter of the "Flavor in the era of LHC" workshop report discusses flavor-related issues in the production and decays of heavy states at the LHC at high momentum transfer Q, both from the experimental and the theoretical perspective. We review top quark physics, and discuss the flavor aspects of several extensions of the standard model, such as supersymmetry, little Higgs models or models with extra dimensions. This includes discovery aspects, as well as the measurement of several properties of these heavy states. We also present publicly available computational tools related to this topic.
Resumo:
The real (epsilon') and imaginary (epsilon) components of the complex permittivity of blends of PVDF [poly(vinylidene fluoride)] with POMA [poly(o-methoxyaniline)] doped with toluenosulfonic acid (TSA) containing 1, 2.5, and 5 wt % POMA-TSA were determined in the frequency interval between 10(2) and 3 X 10(6) Hz and in the temperature range from -120 up to 120degreesC. It was observed that the values of epsilon' and epsilon had a greater increase with the POMA-TSA content and with a temperature in the region of frequencies below 10 kHz. This effect decreased with frequency and it was attributed to interfacial polarization. This polarization was caused by the blend heterogeneity, formed by conductive POMA-TSA agglomerates dispersed in an insulating matrix of PVDF. The equation of Maxwell-Garnett, modified by Cohen, was used to evaluate the permittivity and conductivity behavior of POMA-TSA in the blends. A strong decrease was observed in POMA-TSA conductivity in the blend, which was bigger the lower the POMA-TSA content in the blend. This decrease could have been caused either by the POMA dedoping during the blend preparation process or by its dispersion into the insulating matrix. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Blends of poly(vinylidene fluoride), PVDF, and poly(o-methoxyaniline), POMA doped with toluene sulfonic acid, TSA, were prepared by casting at various compositions and studied by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry. The blend composition has a great influence on the morphology obtained. As the concentration of POMA-TSA is increased in the blend an interconnecting fibrillar-like morphology is formed and the spherulites characteristic of pure PVDF are destroyed. The variation of blend morphology is further discussed based on X-ray diffraction and differential scanning calorimetry analysis. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Flexible and free-standing films from blends of polyurethane, based on castor oil, and polyaniline were obtained with various compositions by casting. Significant increase on conductivity followed by a considerable decrease on doping time was obtained by doping the films in N,N-dimethylformamide (DMF) solution with p-toluene sulphonic acid (TSA) or HCl instead of the conventional doping in aqueous solution. This doping efficiency is proposed to be due to an improved swelling of the blend structure caused by the solvent. The electrical conductivity increases significantly upon polyaniline content increase reaching 10(-2) S/cm for a polyaniline content of about 10% (w/w).
Resumo:
Study Objectives: To study endotracheal tube (ETT) cuff pressures during nitrous oxide (N2O) anesthesia when the cuffs are inflated with air to achieve sealing pressure, and to evaluate the frequency of postoperative laryngotracheal complaints.Design: Prospective, randomized, blind study.Setting: Metropolitan teaching hospital.Patients: 50 ASA physical status I and II patients scheduled for elective abdominal surgery.Interventions: Patients received standard general anesthesia with 66% N2O in oxygen. In 25 patients, the ETT cuff was inflated with air to achieve a sealing pressure (P-seal group). In 25 patients, the ETT cuff was inflated with air to achieve a pressure of 25 cm H2O (P-25 group).Measurements and Main Results: ETT intracuff pressures were recorded before (control) and at 30, 60, 90, 120, and 150 minutes during N2O administration. We investigated the frequency and intensity of sore throat, hoarseness, and dysphagia in patients in the Post-Anesthesia Care Unit (PACU) and 24 hours following tracheal extubation. The cuff pressures in the P-seal group were significantly lower than in the P-25 group at all time points studied (p < 0.001), with a significant increase with time in both groups (p < 0.001). The cuff pressures exceeded the critical pressure of 30 cm H2O only after 90 minutes in the P-seal group and already by 30 minutes in the P-25 group. The frequency and intensity of sore throat, hoarseness, and dysphagia were similar in both groups in the PACU and 24 hours after tracheal extubation (p > 0.05).Conclusions: Minimum ETT sealing cuff pressure during N2O anesthesia did not prevent, but instead attenuated, the increase in cuff pressure and did not decrease postoperative laryngotracheal complaints. (C) 2004 by Elsevier B.V.
Resumo:
We analyze the potential of the Fermilab Tevatron and CERN Large Hadron Collider (LHC) to study anomalous quartic vector-boson interactions gamma gamma ZZ and gammaW(+)W(-). Working in the framework of SU(2)(L) circle times U(1)(Y) chiral Lagrangians, we study the production of photon pairs accompanied by l(+) l(-), l(+/-) v, and jet pairs to impose bounds on these new couplings, taking into account the unitarity constraints. We compare our findings with the indirect limits coming from precision electroweak measurements as well as with presently available direct searches at CERN LEPII. We show that the Tevatron run II can provide limits on these quartic limits which are of the same order of magnitude as the existing bounds from LEPII searches. LHC will be able to tighten considerably the direct constraints on these possible new interactions, leading to more stringent limits than the presently available indirect ones.
Resumo:
Given its weak coupling to bottom quarks and tau leptons, the Higgs boson may predominantly decay into invisible particles like gravitinos, neutralinos, or gravitons. We consider the manifestation of such an invisibly decaying Higgs boson in weak boson fusion at the CERN LHC. Distinctive kinematic distributions of the two quark jets of the signal as compared to Zjj and Wjj backgrounds allow to restrict the Higgs branching ratio to 'invisible' final states to some 13% with 10 fb(-1) of data, provided events with two energetic forward jets of high dijet invariant mass and with substantial missing transverse momentum can be triggered efficiently. It is also possible to discover these particles with masses up to 480 GeV in weak boson fusion, at the 5 sigma level, provided their invisible branching ratio is close to 100%. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Assuming that supersymmetry is realized with parameters in the hyperbolic branch/focus point region of the minimal supergravity model, we show that by searching for multijet+E-T(miss) events with tagged b jets the reach of experiments at the LHC may be extended by as much as 20% from current projections. The reason for this is that gluino decays to third generation quarks are enhanced because the lightest neutralino has substantial Higgsino components. Although we were motivated to perform this analysis because the hyperbolic branch/focus point region is compatible with the recent determination of the relic density of cold dark matter, our considerations may well have a wider applicability since decays of gluinos to third generation quarks are favored in a wide variety of models.
Resumo:
We review the present searches for scalar leptoquarks and the potential of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation leptoquarks.
Resumo:
We analyze the potentiality of the CERN Large Hadron Collider to probe the Higgs boson couplings to the electroweak gauge bosons. We parametrize the possible deviations of these couplings due to new physics in a model independent way, using the most general dimension-six effective lagrangian where the SU(2)(L) x U(1)(Y) is realized linearly. For intermediate Higgs masses, the decay channel into two photons is the most important one for Higgs searches at the LHC, We study the effects of these new interactions on the Higgs production mechanism and its subsequent decay into two photons. We show that the LHC will be sensitive to new physics scales beyond the present limits extracted from the LEP and Tevatron physics. (C) 2000 Elsevier B.V. B,V, All rights reserved.
Resumo:
We compute the survival probability {vertical bar S vertical bar(2)} of large rapidity gaps (LRG) in a QCD based eikonal model with a dynamical gluon mass, where this dynamical infrared mass scale represents the onset of nonperturbative contributions to the diffractive hadron-hadron scattering. Since rapidity gaps can occur in the case of Higgs boson production via fusion of electroweak bosons, we focus on WW -> H fusion processes and show that the resulting {vertical bar S vertical bar(2)} decreases with the increase of the energy of the incoming hadrons; in line with the available experimental data for LRG. We obtain {vertical bar S vertical bar(2)} = 27.6 +/- 7.8% (18.2 +/- 17.0%) at Tevatron (CERN-LHC) energy for a dynamical gluon mass m(g) = 400 MeV. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.