886 resultados para LAND USE
Resumo:
The objective of this study is to gain a quantitative understanding of land use and land cover change (LULCC) that have occurred in a rural Nicaraguan municipality by analyzing Landsat 5 Thematic Mapper (TM) images. By comparing the potential extent of tropical dry forest (TDF) with Landsat 5 TM images, this study analyzes the loss of this forest type on a local level for the municipality of San Juan de Cinco Pinos (63.5 km2) in the Department of Chinandega. Change detection analysis shows where and how land use has changed from 1985 to the present. From 1985 to 2011, nearly 15% of the TDF in San Juan de Cinco Pinos was converted to other land uses. Of the 1434.2 ha of TDF that was present in 1985, 1223.64 ha remained in 2011. The deforestation is primarily a result of agricultural expansion and fuelwood extraction. If current rates of TDF deforestation continue, the municipality faces the prospect of losing its forest cover within the next few decades.
Resumo:
A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.
Resumo:
Elevated nitrate in groundwater is common is agricultural areas where fertilizer has been added at high rates for decades. Within the Judith River Wastershed, high native soil fertility allowed for dryland wheat production without N fertilization until the 1980s, yet elevated nitrate levels were frequently observed in shallow aquifers. Dr. Stephanie Ewing presents results for soil, groundwater and surface water analyses from a hydrologically isolated strath terrace near Moccasin, MT. In context of this uniquely well constrained field setting, these observed data, along with land use history and a simple mass balance model, revel the long term development and perturbation of native soil fertility with cultivation.
Resumo:
Alpine grasslands are ecosystems with a great diversity of plant species. However, little is known about other levels of biodiversity, such as landscape diversity, diversity of biological interactions of plants with herbivores or fungal pathogens, and genetic diversity. We therefore explored natural and anthropogenic determinants of grassland biodiversity at several levels of biological integration, from the genetic to the landscape level in the Swiss Alps. Differences between cultural traditions (Romanic, Germanic, and Walser) turned out to still affect land use diversity and thus landscape diversity. Increasing land use diversity, in turn, increased plant species diversity per village. However, recent land use changes have reduced this diversity. Within grassland parcels, plant species diversity was higher on unfertilized mown grasslands than on fertilized or grazed ones. Most individual plants were affected by herbivores and fungal leaf pathogens, reflecting that parcels harbored a great diversity of herbivores and pathogens. However, as plant damage by herbivores and pathogens was not severe, conserving these biological interactions among plants is hardly compromising agricultural goals. A common-garden experiment revealed genetic differentiation of the important fodder grass Poa alpina between mown and grazed sites, suggesting adaptation. Per-village genetic diversity of Poa alpina was greater in villages with higher land use diversity, analogous to the higher plant species diversity there. Overall, landscape diversity and biodiversity within grassland parcels are currently declining. As this contradicts the intention of Swiss law and international agreements, financial incentives need to be re-allocated and should focus on promoting high biodiversity at the local and the landscape level. At the same time, this will benefit landscape attractiveness for tourists and help preserve a precious cultural heritage in the Swiss Alps.
Resumo:
Forests near the Mediterranean coast have been shaped by millennia of human disturbance. Consequently, ecological studies relying on modern observations or historical records may have difficulty assessing natural vegetation dynamics under current and future climate. We combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate. We simulated vegetation dynamics near Lago di Massaciucoli for the last 7,000 years using a local chironomid-inferred temperature reconstruction with combinations of three fire regimes (small infrequent, large infrequent, small frequent) and three browsing intensities (no browsing, light browsing, and moderate browsing), and compared model output to pollen data. Simulations with low disturbance support pollen-inferred evidence for a mixed forest dominated by Quercus ilex (a Mediterranean species) and Abies alba (a montane species). Whereas pollen data record the collapse of A. alba after 6000 cal yr bp, simulated populations expanded with declining summer temperatures during the late Holocene. Simulations with increased fire and browsing are consistent with evidence for expansion by deciduous species after A. alba collapsed. According to our combined paleo-environmental and modeling evidence, mixed Q. ilex and A. alba forests remain possible with current climate and limited disturbance, and provide a viable management objective for ecosystems near the Mediterranean coast and in regions that are expected to experience a mediterranean-type climate in the future.
Resumo:
Intensification of land use in semi-natural hay meadows has resulted in a decrease in species diversity. This is often thought to be caused by the reduced establishment of plant species due to high competition for light under conditions of increased productivity. Sowing experiments in grasslands have found reliable evidence that diversity can also be constrained by seed availability, implying that processes influencing the production and persistence of seeds may be important for the functioning of ecosystems. So far, the effects of land-use intensification on the seed rain and the persistence of seeds in the soil have been unclear. We selected six pairs of extensively managed (Festuco-Brometea) and intensively managed (Arrhenatheretalia) grassland with traditional late cutting regimes across Switzerland and covering an annual productivity gradient in the range 176–1211 gm−2. In each grassland community, we estimated seed rain and seed bank using eight pooled seed-trap or topsoil samples of 89 cm2 in each of six plots representing an area of c. 150 m2. The seed traps were established in spring 2010 and collected simultaneously with soil cores after an exposure of c. three months. We applied the emergence method in a cold frame over eight months to estimate density of viable seeds. With community productivity reflecting land-use intensification, the density and species richness in the seed rain increased, while mean seed size diminished and the proportions of persistent seeds and of species with persistent seeds in the topsoil declined. Stronger limitation of seeds in extensively managed semi-natural grasslands can explain the fact that such grasslands are not always richer in species than more intensively managed ones.
Resumo:
Changes in agricultural practices of semi-natural mountain grasslands are expected to modify plant community structure and shift dominance patterns. Using vegetation surveys of 11 sites in semi-natural grasslands of the Swiss Jura and Swiss and French Alps, we determined the relative contribution of dominant, subordinate and transient plant species in grazed and abandoned communities and observed their changes along a gradient of productivity and in response to abandonment of pasturing. The results confirm the humpbacked diversity–productivity relationship in semi-natural grassland, which is due to the increase of subordinate species number at intermediate productivity levels. Grazed communities, at the lower or higher end of the species diversity gradient, suffered higher species loss after grazing abandonment. Species loss after abandonment of pasturing was mainly due to a higher reduction in the number of subordinate species, as a consequence of the increasing proportion of dominant species. When plant biodiversity maintenance is the aim, our results have direct implications for the way grasslands should be managed. Indeed, while intensification and abandonment have been accelerated since few decades, our findings in this multi-site analysis confirm the importance of maintaining intermediate levels of pasturing to preserve biodiversity.
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land-use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land-use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land-use-related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species.
Resumo:
Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.
Resumo:
Reducing Emissions from Deforestation and Forest Degradation and enhancing forest carbon stocks (REDD+) is a performance-based payment mechanism currently being debated in international and national environmental policy and planning forums. As the mechanism is based on conditionality, payments must reflect land stewards’ level of compliance with carbon-efficient management practices. However, lack of clarity in land governance and carbon rights could undermine REDD+ implementation. Strategies are needed to avoid perverse incentives resulting from the commoditization of forest carbon stocks and, importantly, to identify and secure the rights of legitimate recipients of future REDD+ payments. We propose a landscape-level approach to address potential conflicts related to carbon tenure and REDD+ benefit sharing. We explore various land-tenure scenarios and their implications for carbon ownership in the context of a research site in northern Laos. Our case study shows that a combination of relevant scientific tools, knowledge, and participatory approaches can help avoid the marginalization of rural communities during the REDD+ process. The findings demonstrate that participatory land-use planning is an important step in ensuring that local communities are engaged in negotiating REDD+ schemes and that such negotiations are transparent. Local participation and agreements on land-use plans could provide a sound basis for developing efficient measurement, reporting, and verification systems for REDD+.