995 resultados para KOOP HARDNESS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper- and nickel-coated graphite particles can be successfully introduced into aluminium-base alloy melts as pellets to produce cast aluminium-graphite particle composites. The pellets were made by pressing mixtures of nickel- or copper-coated graphite particles and aluminium powders together at pressures varying between 2 and 20 kg mm–2. These pellets were dispersed in aluminium alloy melts by plunging and holding them in the melts using a refractory coated mild steel cone, until the pellets disintegrated and the powders were dispersed. The optimum pressure for the preparation of pellets was 2 to 5 kg mm–2 and the optimum size and percentage of aluminium powder were 400 to 1000mgrm and 35 wt% respectively. Under optimum conditions the recovery of the graphite particles in the castings was as high as 96%, these particles being pushed into the last freezing interdendritic regions. The tensile strength and the hardness of the graphite aluminium alloys made using the pellet method are comparable to those of similar composites made using gas injection or the vortex method. The pellet method however has the advantage of greater reproducibility and flexibility. Dispersion of graphite particles in the matrix of cast aluminium alloys using the pellet method increases their resistance to wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(vinyl alcohol)-matrix reinforced with nanodiamond (ND) particles, with ND content up to 0.6 wt%, were synthesized. Characterization of the composites by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) reveal uniform distribution of the ND particles with no agglomeration in the matrix. Differential scanning calorimetry reveals that the crystallinity of the polymer increases with increasing ND content, indicating a strong interaction between ND and PVA. Nano-indentation technique was employed to assess the mechanical properties of composites. Results show that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of PVA. Possible micromechanisms responsible for the enhancement of the mechanical properties are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical microscopy has been employed to observe the slip lines in deformed Al-2% Ge alloy samples. Slip lines have been observed in the as-quenched, partially-aged, fully-aged and over-aged states. The lines tend to traverse fairly straight paths in the case of quenched and partially-aged conditions. Fully-aged samples also reveal such straight running lines when tested at low-temperatures. However, the density of the lines generally decreases as the peak-aged state is approached. These results are in agreement with the idea that thermally activated shearing of the precipitates is occurring in the alloy aged up to peak-hardness. The irregular lines for the over-aged specimens support the view that the moving dislocations by-pass the precipitates during deformation. The influence of test-temperature on the appearance of slip traces has been briefly examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physicochemical characterization of freshwater samples from Finland, Sweden, the Netherlands, and Spain revealed that water hardness and pH decreased and the quantity and quality of humic substances changed considerably in this geographical series from south to north. Since the ambient water chemistry may affect the availability of chemicals, the total aqueous concentration of a chemical may be insufficient to predict the bioconcentration, subsequent biological response, and thus risk. In addition, organisms could be affected directly by water quality characteristics. In this context the main objective of this thesis was to investigate the bioavailability of selected ecotoxicologically relevant chemicals (cadmium, benzo(a)pyrene, and pyrene) in various European surface waters and to show the importance of certain water chemistry characteristics in interpreting the bioavailability and toxicity results. The bioavailability of cadmium to Daphnia magna was examined in very soft humic lake water. Humic substances as natural ligands decreased the free and bioavailable proportion of cadmium in soft lake water. As a consequence the uptake rate and the acute toxicity decreased compared with the humic-free reference. When the hardness of humic lake water was artificially elevated, the acute toxicity of cadmium decreased, although the proportion of free cadmium increased. The decreased bioavailability of cadmium in hard water was a result of effective competition for uptake by the hardness cations, especially calcium ions. The protective role of humic substances and water hardness against cadmium toxicity was also observed in Lumbriculus variegatus, although D. magna was more sensitive to cadmium. The bioavailability of two polycyclic aromatic hydrocarbons (PAHs), pyrene and benzo(a)pyrene, was studied in European surface waters of varying water chemistry. Humic substances acted as complexing ligands with both PAHs, but the bioavailability of the more lipophilic benzo(a)pyrene to D. magna was affected more by humic substances than that of pyrene. In addition, not only the quantity of humic substances, but also their quality affected the bioavailability of benzo(a)pyrene. Nevertheless, the humic substances played a protective role in the photo-enhanced toxicity of pyrene under UV-B radiation. Water hardness had no effect on pyrene toxicity. Results indicate that the typical physicochemical characteristics of boreal freshwaters should be considered carefully in local and regional risk assessment of chemicals concerning the Fennoscandian region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microbeam testing geometry is designed to study the variation in fracture toughness across a compositionally graded NiAl coating on a superalloy substrate. A bi-material analytical model of fracture is used to evaluate toughness by deconvoluting load-displacement data generated in a three-point bending test. It is shown that the surface layers of a diffusion bond coat can be much more brittle than the interior despite the fact that elastic modulus and hardness do not display significant variations. Such a gradient in toughness allows stable crack propagation in a test that would normally lead to unstable fracture in a homogeneous, brittle material. As the crack approaches the interface, plasticity due to the presence of Ni3Al leads to gross bending and crack bifurcation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to protect the critical electronic equipment/system against damped sine transient currents induced into its cables due to transient electromagnetic fields, switching phenomena, platform resonances, etc. it is necessary to provide proper hardening. The hardness assurance provided can be evaluated as per the test CS 116 of MIL STD 461E/F in laboratory by generating & inducing the necessary damped sine currents into the cables of the Equipment Under Test (EUT). The need and the stringent requirements for building a damped sine wave current generator for generation of damped sine current transients of very high frequencies (30 MHz & 100 MHz) have been presented. A method using LC discharge for the generation has been considered in the development. This involves building of extremely low & nearly loss less inductors (about 5 nH & 14 nH) as well as a capacitor & a switch with much lower inductances. A technique for achieving this has been described. Two units (I No for 30 MHz. & 100 MHz each) have been built. Experiments to verify the output are being conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chips were produced by orthogonal Cutting of cast pure magnesium billet with three different tool rake angles viz., -15 degrees, -5 degrees and +15 degrees on a lathe. Chip consolidation by solid state recycling technique involved cold compaction followed by hot extrusion. The extruded products were characterized for microstructure and mechanical properties. Chip-consolidated products from -15 degrees rake angle tools showed 19% increase in tensile strength, 60% reduction ingrain size and 12% increase in hardness compared to +15 degrees rake chip-consolidated product indicating better chip bonding and grain refinement. Microstructure of the fracture specimen Supports the abovefinding. On the overall, the present work high lights the importance of tool take angle in determining the quality of the chip-consolidated products. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y2SiO5 has potential applications as functional-structural ceramic and environmental/thermal barrier coating material. As an important grain-boundary phase in the sintered Si3N4, it also influences the mechanical and dielectric performances of the host material. In this paper, we present the mechanical properties of Y2SiO5 including elastic moduli, hardness, strength and fracture toughness, and try to understand the mechanical features from the viewpoint of crystal structure. Y2SiO5 has low shear modulus, low hardness, as well as high capacity for dispersing mechanical damage energy and for resisting crack penetration. Particularly, it can be machined by cemented carbides tools. The crystal structure characteristics of Y2SiO5 suggest the low-energy weakly bonded atomic planes crossed only by the easily breaking Y-O bonds as well as the rotatable rigid SiO4 tetrahedra are the origins of low shear deformation, good damage tolerance and good machinability of this material. TEM observations also demonstrate that the mechanical damage energy was dispersed in the form of the micro-cleavages, stacking faults and twins along these weakly bonded atomic planes, which allows the "microscale-plasticity" for Y2SiO5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instrumented indentation experiments on a Zr-based bulk metallic glass (BMG) in as-cast, shot-peened and structurally relaxed conditions were conducted to examine the dependence of plastic deformation on its structural state. Results show significant differences in hardness, H, with structural relaxation increasing it and shot peening markedly reducing it, and slightly changed morphology of shear bands around the indents. This is in contrast to uniaxial compressive yield strength, sigma(y), which remains invariant with the change in the structural state of the alloys investigated. The plastic constraint factor, C = H/sigma(y), of the relaxed BMG increases compared with that of the as-cast glass, indicating enhanced pressure sensitivity upon annealing. In contrast, C of the shot-peened layer was found to be similar to that observed in crystalline metals, indicating that severe plastic deformation could eliminate pressure sensitivity. Microscopic origins for this result, in terms of shear transformation zones and free volume, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.