969 resultados para Item inversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Work Limitations Questionnaire (WLQ) is used to determine the amount of work loss and productivity which stem from certain health conditions, including rheumatoid arthritis and cancer. The questionnaire is currently scored using methodology from Classical Test Theory. Item Response Theory, on the other hand, is a theory based on analyzing item responses. This study wanted to determine the validity of using Item Response Theory (IRT), to analyze data from the WLQ. Item responses from 572 employed adults with dysthymia, major depressive disorder (MDD), double depressive disorder (both dysthymia and MDD), rheumatoid arthritis and healthy individuals were used to determine the validity of IRT (Adler et al., 2006).^ PARSCALE, which is IRT software from Scientific Software International, Inc., was used to calculate estimates of the work limitations based on item responses from the WLQ. These estimates, also known as ability estimates, were then correlated with the raw score estimates calculated from the sum of all the items responses. Concurrent validity, which claims a measurement is valid if the correlation between the new measurement and the valid measurement is greater or equal to .90, was used to determine the validity of IRT methodology for the WLQ. Ability estimates from IRT were found to be somewhat highly correlated with the raw scores from the WLQ (above .80). However, the only subscale which had a high enough correlation for IRT to be considered valid was the time management subscale (r = .90). All other subscales, mental/interpersonal, physical, and output, did not produce valid IRT ability estimates.^ An explanation for these lower than expected correlations can be explained by the outliers found in the sample. Also, acquiescent responding (AR) bias, which is caused by the tendency for people to respond the same way to every question on a questionnaire, and the multidimensionality of the questionnaire (the WLQ is composed of four dimensions and thus four different latent variables) probably had a major impact on the IRT estimates. Furthermore, it is possible that the mental/interpersonal dimension violated the monotonocity assumption of IRT causing PARSCALE to fail to run for these estimates. The monotonicity assumption needs to be checked for the mental/interpersonal dimension. Furthermore, the use of multidimensional IRT methods would most likely remove the AR bias and increase the validity of using IRT to analyze data from the WLQ.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposed a novel statistical method that modeled the multiple outcomes and missing data process jointly using item response theory. This method follows the "intent-to-treat" principle in clinical trials and accounts for the correlation between outcomes and missing data process. This method may provide a good solution to chronic mental disorder study. ^ The simulation study demonstrated that if the true model is the proposed model with moderate or strong correlation, ignoring the within correlation may lead to overestimate of the treatment effect and result in more type I error than specified level. Even if the within correlation is small, the performance of proposed model is as good as naïve response model. Thus, the proposed model is robust for different correlation settings if the data is generated by the proposed model.^

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identificar, cuantificar y gestionar el riesgo económico asociado a las decisiones de inversión supone un desafío para ejecutivos e inversores del sector minero. Sin embargo, en gran parte de los estudios de factibilidad de proyectos mineros, la evaluación de riesgo se basa en la modelización estocástica de la rentabilidad, que aportan poco en los aspectos de gestión del riesgo y toma de decisión. En mi presentación, les planteo un nuevo enfoque en que el riesgo se evalúa en cada etapa de la cadena de valor del proyecto, desde la exploración hasta el cierre de la mina, lo que permite la gestión de riesgo como un proceso escalonado de optimización del valor añadido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.