937 resultados para Ion Implantation effects
Resumo:
Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.
Resumo:
Single-phase gadolinium disilicide was fabricated by a low-energy ion-beam implantation technique. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine the composition and chemical states of the film. The structure of the sample was analyzed by X-ray diffraction and the surface morphology was investigated by scan electron microscopy. Based on the measurements, only orthorhombic GdSi2 phase was found in the sample and the surface morphology was pitting. After annealing at 350degreesC for 30 min at Ar atmosphere, the full-width at half-maximum of GdSi2 became narrower. It indicates that the GdSi2 is crystallized better after annealing. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Silicon-on-insulator (SOI) technologies have been developed for radiation-hardened military and space applications. The use of SOI has been motivated by the full dielectric isolation of individual transistors, which prevents latch-up. The sensitive region for charge collection in SOI technologies is much smaller than for bulk-silicon devices potentially making SOI devices much harder to single event upset (SEU). In this study, 64 kB SOI SRAMs were exposed to different heavy ions, such as Cu, Br, I, Kr. Experimental results show that the heavy ion SEU threshold linear energy transfer (LET) in the 64 kB SOI SRAMs is about 71.8 MeV cm(2)/mg. Accorded to the experimental results, the single event upset rate (SEUR) in space orbits were calculated and they are at the order of 10(-13) upset/(day bit).
Resumo:
Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.