993 resultados para Interval simulation
Resumo:
A precise estimation of the postmortem interval (PMI) is one of the most important topics in forensic pathology. However, the PMI estimation is based mainly on the visual observation of cadaverous pheno- mena (e.g. algor, livor and rigor mortis) and on alternative methods such as thanatochemistry that remain relatively imprecise. The aim of this in vitro study was to evaluate the kinetic alterations of several bio- chemical parameters (i.e. proteins, enzymes, substrates, electrolytes and lipids) during putrefaction of human blood. For this purpose, we performed kinetic biochemical analysis during a 264 hour period. The results showed a significant linear correlation between total and direct bilirubin, urea, uric acid, transferrin, immunoglobulin M (IgM), creatine kinase (CK), aspartate transaminase (AST), calcium and iron with the time of blood putrefaction. These parameters allowed us to develop two mathematical models that may have predictive values and become important complementary tools of traditional methods to achieve a more accurate PMI estimation
Resumo:
OBJECTIVE: To determine in arrhythmogenic right ventricular cardiomyopathy the value of QT interval dispersion for identifying the induction of sustained ventricular tachycardia in the electrophysiological study or the risk of sudden cardiac death. METHODS: We assessed QT interval dispersion in the 12-lead electrocardiogram of 26 patients with arrhythmogenic right ventricular cardiomyopathy. We analyzed its association with sustained ventricular tachycardia and sudden cardiac death, and in 16 controls similar in age and sex. RESULTS: (mean ± SD). QT interval dispersion: patients = 53.8±14.1ms; control group = 35.0±10.6ms, p=0.001. Patients with induction of ventricular tachycardia: 52.5±13.8ms; without induction of ventricular tachycardia: 57.5±12.8ms, p=0.420. In a mean follow-up period of 41±11 months, five sudden cardiac deaths occurred. QT interval dispersion in this group was 62.0±17.8, and in the others it was 51.9±12.8ms, p=0.852. Using a cutoff > or = 60ms to define an increase in the degree of the QT interval dispersion, we were able to identify patients at risk of sudden cardiac death with a sensitivity of 60%, a specificity of 57%, and positive and negative predictive values of 25% and 85%, respectively. CONCLUSION: Patients with arrhythmogenic right ventricular cardiomyopathy have a significant increase in the degree of QT interval dispersion when compared with the healthy population. However it, did not identify patients with induction of ventricular tachycardia in the electrophysiological study, showing a very low predictive value for defining the risk of sudden cardiac death in the population studied.
Resumo:
OBJECTIVE: Parasympathetic dysfunction is an independent risk factor in individuals with coronary artery disease, and cholinergic stimulation is a potential therapeutical option. We determined the effects of pyridostigmine bromide, a reversible anticholinesterase agent, on electrocardiographic variables of healthy individuals. METHODS: We carried out a cross-sectional, double blind, randomized, placebo-controlled study. We obtained electrocardiographic tracings in 12 simultaneous leads of 10 healthy young individuals at rest before and after oral administration of 45 mg of pyridostigmine or placebo. RESULTS: Pyridostigmine increased RR intervals (before: 886±27 ms vs after: 1054±37 ms) and decreased QTc dispersion (before: 72±9ms vs after: 45±3ms), without changing other electrocardiographic variables (PR segment, QT interval, QTc, and QT dispersion). CONCLUSION: Bradycardia and the reduction in QTc dispersion induced by pyridostigmine may effectively represent a protective mechanism if these results can be reproduced in individuals with cardiovascular diseases.
Resumo:
This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011
Resumo:
Zerspanung, Drehen, Kühlschmierung, Werkstücktemperatur, thermisch bedingte Abweichungen, FE-Modellierung, Inversaufgaben
Resumo:
Stelmor, Simulation, Drahtabkühlung, Luftkühlstrecke, Modell, Temperaturfeld, Wärmeübergang, Modellierung, Wärmeübergangskoeffizient
Resumo:
Solar cooling, absorption chiller, latent heat storage, TRNSYS, simulation, ammonia, water
Resumo:
Electrochromatography, numerical simulation, electrokinetics, electroosmosis, parallel computing
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Dendritic Growth, Stefan-Problem, Finite-Element-Method, Level-Set-Method
Resumo:
Modular modelling, dynamics simulation, multibodies, O(N) method, closed loops, post-stabilization