937 resultados para Interacting constraints
Resumo:
The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.
Resumo:
Bottom of the pyramid (BoP) markets are an underserved market of approximately four billion people living on under $5 a day in four regional areas: Africa, Asia, Eastern Europe and Latin America. According to estimations, the BoP market forms a $5 trillion global consumer market. Despite the potential of BoP markets, companies have traditionally focused on serving the markets of developed countries and ignored the large customer group at the bottom of the pyramid. The BoP approach as first developed by Prahalad and Hart in 2002 has focused on multinational corporations (MNCs), which were thought of as the ones who should take responsibility in serving the customers at the bottom of the pyramid. This study challenges this proposition and gives evidence that also smaller international new ventures – entrepreneurial firms that are international from their birth, can be successful in BoP markets. BoP markets are characterized by a number of deficiencies in the institutional environment such as strong reliance on informal sector, lack of infrastructure and lack of skilled labor. The purpose of this study is to increase the understanding of international entrepreneurship in BoP markets by analyzing how international new ventures overcome institutional constraints in BoP markets and how institutional uncertainty can be exploited by solving institutional problems. The main objective is divided into four sub objectives. • To describe the opportunities and challenges BoP markets present • To analyze the internationalization of INVs to BoP markets • To examine what kinds of strategies international entrepreneurs use to overcome institutional constraints • To explore the opportunities institutional uncertainty offers for INVs Qualitative approach was used to conduct this study and multiple-case study was chosen as a research strategy in order to allow cross-case analysis. The empirical data was collected through four interviews with the companies Fuzu, Mifuko, Palmroth Consulting and Sibesonke. The results indicated that understanding of the wider institutional environment improves the survival prospects of INVs in BoP markets and that it is indeed possible to exploit institutional uncertainty by solving institutional problems. The main findings were that first-hand experience of the markets and grassroots levels of information are the best assets in internationalization to BoP markets. This study highlights that international entrepreneurs with limited resources can improve the lives of people at the BoP with their business operations and act as small-scale institutional entrepreneurs contributing to the development of the institutional environment of BoP markets.
Resumo:
This is a qualitative study exploring the physical activity patterns of a group of women with physical disabilities through their lifespan. In-depth interviews were done with a group of 6 women aged 1 9 to 3 1 . The data were analyzed via content and demographic strategies. Participants in this study reported that their physical activity patterns and their experiences related to their physical activity participation changed over their lives. They were most physically active in their youth (under 14 years of age) and as they reached high school age (over 14 years of age) and to the present time, they have become less physically active. They also reported both affordances and constraints to their physical activity participation through their lifespan. In their youth, they reported affordances such as their parents' assistance, an abundance of available physical activity opportunities, and independent unassisted mobility, as all playing an important factor in their increased youth physical activity. In adulthood, the participants' reported less time, fewer opportunities for physical activity, and reliance on power mobility as significant constraints to their physical activity. The participants reported fewer constraints to being physically active in their youth when compared to adulthood. Their reasons for participation in physical activity changed from fun and socialization in their youth instead of for maintenance of health, weight, and function in adulthood. These affordances, constraints and reasons for physical activity participation were supported in the literature.
Resumo:
The design of a large and reliable DNA codeword library is a key problem in DNA based computing. DNA codes, namely sets of fixed length edit metric codewords over the alphabet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and chemical restrictions of DNA strands. The primary constraints that we consider are the reverse--complement constraint and the fixed GC--content constraint, as well as the basic edit distance constraint between codewords. We focus on exploring the theory underlying DNA codes and discuss several approaches to searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive search algorithm to produce provably optimal DNA codes for codes with small parameter values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes with relatively large parameter values, where we can consider their sizes as reasonable lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA codes with length from 1 to 9 and minimum distance from 1 to 9.
Resumo:
Static oligopoly analysis predicts that if a single firm in Cournot equilibrium were to be constrained to contract its production marginally, its profits would fall. on the other hand, if all the firms were simultaneously constrained to reduce their productino, thus moving the industry towards monopoly output, each firm's profit would rise. We show that these very intuitive results may not hold in a dynamic oligopoly.
Resumo:
Controlled choice over public schools attempts giving options to parents while maintaining diversity, often enforced by setting feasibility constraints with hard upper and lower bounds for each student type. We demonstrate that there might not exist assignments that satisfy standard fairness and non-wastefulness properties; whereas constrained non-wasteful assignments which are fair for same type students always exist. We introduce a "controlled" version of the deferred acceptance algorithm with an improvement stage (CDAAI) that finds a Pareto optimal assignment among such assignments. To achieve fair (across all types) and non-wasteful assignments, we propose the control constraints to be interpreted as soft bounds-flexible limits that regulate school priorities. In this setting, a modified version of the deferred acceptance algorithm (DAASB) finds an assignment that is Pareto optimal among fair assignments while eliciting true preferences. CDAAI and DAASB provide two alternative practical solutions depending on the interpretation of the control constraints. JEL C78, D61, D78, I20.
Resumo:
Les suspensivores ont la tâche importante de séparer les particules de l'eau. Bien qu'une grande gamme de morphologies existe pour les structures d'alimentation, elles sont pratiquement toutes constituées de rangées de cylindres qui interagissent avec leur environnement fluide. Le mécanisme de capture des particules utilisé dépend des contraintes morphologiques, des besoins énergétiques et des conditions d'écoulement. Comme nos objectifs étaient de comprendre ces relations, nous avons eu recours à des études de comparaison pour interpréter les tendances en nature et pour comprendre les conditions qui provoquent de nouveaux fonctionnements. Nous avons utilisé la dynamique des fluides numérique (computational fluid dynamics, CFD) pour créer des expériences contrôlées et pour simplifier les analyses. Notre première étude démontre que les coûts énergétiques associés au pompage dans les espaces petits sont élevés. De plus, le CFD suggère que les fentes branchiales des ptérobranches sont des structures rudimentaires, d'un ancêtre plus grande. Ce dernier point confirme l'hypothèse qu'un ver se nourrit par filtration tel que l'ancêtre des deuterostomes. Notre deuxième étude détermine la gamme du nombre de Reynolds number critique où la performance d'un filtre de balane change. Quand le Re est très bas, les différences morphologiques n'ont pas un grand effet sur le fonctionnement. Cependant, une pagaie devient une passoire lorsque le Re se trouve entre 1 et 3,5. Le CFD s’est dévoilé être un outil très utile qui a permis d’obtenir des détails sur les microfluides. Ces études montrent comment la morphologie et les dynamiques des fluides interagissent avec la mécanisme de capture ou de structures utilisées, ainsi que comment des petits changements de taille, de forme, ou de vitesse d'écoulement peuvent conduire à un nouveau fonctionnement.
Resumo:
Les centres d’appels sont des éléments clés de presque n’importe quelle grande organisation. Le problème de gestion du travail a reçu beaucoup d’attention dans la littérature. Une formulation typique se base sur des mesures de performance sur un horizon infini, et le problème d’affectation d’agents est habituellement résolu en combinant des méthodes d’optimisation et de simulation. Dans cette thèse, nous considérons un problème d’affection d’agents pour des centres d’appels soumis a des contraintes en probabilité. Nous introduisons une formulation qui exige que les contraintes de qualité de service (QoS) soient satisfaites avec une forte probabilité, et définissons une approximation de ce problème par moyenne échantillonnale dans un cadre de compétences multiples. Nous établissons la convergence de la solution du problème approximatif vers celle du problème initial quand la taille de l’échantillon croit. Pour le cas particulier où tous les agents ont toutes les compétences (un seul groupe d’agents), nous concevons trois méthodes d’optimisation basées sur la simulation pour le problème de moyenne échantillonnale. Étant donné un niveau initial de personnel, nous augmentons le nombre d’agents pour les périodes où les contraintes sont violées, et nous diminuons le nombre d’agents pour les périodes telles que les contraintes soient toujours satisfaites après cette réduction. Des expériences numériques sont menées sur plusieurs modèles de centre d’appels à faible occupation, au cours desquelles les algorithmes donnent de bonnes solutions, i.e. la plupart des contraintes en probabilité sont satisfaites, et nous ne pouvons pas réduire le personnel dans une période donnée sont introduire de violation de contraintes. Un avantage de ces algorithmes, par rapport à d’autres méthodes, est la facilité d’implémentation.
Resumo:
The main objective of the present study is to model the gravity fields in terms of lithospheric structure below the western continental margin of India (WCMI) identify zones of crustal mass anomalies and attempt to infer the location of Ocean Continent transition in the Arabian Sea. In this study, the area starting from the western shield margin to the region covering the deep oceanic parts of the Arabian Sea which is bounded by Carlsberg and Cerg and Central Indian ridges in the south, eastern part of the Indus Cone in the west and falling between 630E and 800E longitudes, and 50N - 240N latitudes has been considered. The vast amount of seismic reflection and refraction data in the form of crustal velocities, basement configuration and crustal thicknesses available for the west coast as well as the eastern Arabian Sea has been utilized for this purpose
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.