941 resultados para Intention-based models
Resumo:
Le rapide déclin actuel de la biodiversité est inquiétant et les activités humaines en sont la cause directe. De nombreuses aires protégées ont été mises en place pour contrer cette perte de biodiversité. Afin de maximiser leur efficacité, l’amélioration de la connectivité fonctionnelle entre elles est requise. Les changements climatiques perturbent actuellement les conditions environnementales de façon globale. C’est une menace pour la biodiversité qui n’a pas souvent été intégrée lors de la mise en place des aires protégées, jusqu’à récemment. Le mouvement des espèces, et donc la connectivité fonctionnelle du paysage, est impacté par les changements climatiques et des études ont montré qu’améliorer la connectivité fonctionnelle entre les aires protégées aiderait les espèces à faire face aux impacts des changements climatiques. Ma thèse présente une méthode pour concevoir des réseaux d’aires protégées tout en tenant compte des changements climatiques et de la connectivité fonctionnelle. Mon aire d’étude est la région de la Gaspésie au Québec (Canada). La population en voie de disparition de caribou de la Gaspésie-Atlantique (Rangifer tarandus caribou) a été utilisée comme espèce focale pour définir la connectivité fonctionnelle. Cette petite population subit un déclin continu dû à la prédation et la modification de son habitat, et les changements climatiques pourraient devenir une menace supplémentaire. J’ai d’abord construit un modèle individu-centré spatialement explicite pour expliquer et simuler le mouvement du caribou. J’ai utilisé les données VHF éparses de la population de caribou et une stratégie de modélisation patron-orienté pour paramétrer et sélectionner la meilleure hypothèse de mouvement. Mon meilleur modèle a reproduit la plupart des patrons de mouvement définis avec les données observées. Ce modèle fournit une meilleure compréhension des moteurs du mouvement du caribou de la Gaspésie-Atlantique, ainsi qu’une estimation spatiale de son utilisation du paysage dans la région. J’ai conclu que les données éparses étaient suffisantes pour ajuster un modèle individu-centré lorsqu’utilisé avec une modélisation patron-orienté. Ensuite, j’ai estimé l’impact des changements climatiques et de différentes actions de conservation sur le potentiel de mouvement du caribou. J’ai utilisé le modèle individu-centré pour simuler le mouvement du caribou dans des paysages hypothétiques représentant différents scénarios de changements climatiques et d’actions de conservation. Les actions de conservation représentaient la mise en place de nouvelles aires protégées en Gaspésie, comme définies par le scénario proposé par le gouvernement du Québec, ainsi que la restauration de routes secondaires à l’intérieur des aires protégées. Les impacts des changements climatiques sur la végétation, comme définis dans mes scénarios, ont réduit le potentiel de mouvement du caribou. La restauration des routes était capable d’atténuer ces effets négatifs, contrairement à la mise en place des nouvelles aires protégées. Enfin, j’ai présenté une méthode pour concevoir des réseaux d’aires protégées efficaces et j’ai proposé des nouvelles aires protégées à mettre en place en Gaspésie afin de protéger la biodiversité sur le long terme. J’ai créé de nombreux scénarios de réseaux d’aires protégées en étendant le réseau actuel pour protéger 12% du territoire. J’ai calculé la représentativité écologique et deux mesures de connectivité fonctionnelle sur le long terme pour chaque réseau. Les mesures de connectivité fonctionnelle représentaient l’accès général aux aires protégées pour le caribou de la Gaspésie-Atlantique ainsi que son potentiel de mouvement à l’intérieur. J’ai utilisé les estimations de potentiel de mouvement pour la période de temps actuelle ainsi que pour le futur sous différents scénarios de changements climatiques pour représenter la connectivité fonctionnelle sur le long terme. Le réseau d’aires protégées que j’ai proposé était le scénario qui maximisait le compromis entre les trois caractéristiques de réseau calculées. Dans cette thèse, j’ai expliqué et prédit le mouvement du caribou de la Gaspésie-Atlantique sous différentes conditions environnementales, notamment des paysages impactés par les changements climatiques. Ces résultats m’ont aidée à définir un réseau d’aires protégées à mettre en place en Gaspésie pour protéger le caribou au cours du temps. Je crois que cette thèse apporte de nouvelles connaissances sur le comportement de mouvement du caribou de la Gaspésie-Atlantique, ainsi que sur les actions de conservation qui peuvent être prises en Gaspésie afin d’améliorer la protection du caribou et de celle d’autres espèces. Je crois que la méthode présentée peut être applicable à d’autres écosystèmes aux caractéristiques et besoins similaires.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Although counterfactual thinking is typically activated by a negative outcome, it can have positive effects by helping to regulate and improve future behavior. Known as the content-specific pathway, these counterfactual ruminations use relevant information (i.e., information that is directly related to the problem at hand) to elicit insights about the problem, create a connection between the counterfactual and the desired behavior, and strengthen relevant behavioral intentions. The current research examines how changing the type of relevant information provided (i.e., so that it is either concrete and detailed or general and abstract) influences the relationship between counterfactual thinking and behavioral intentions. Experiments 1 and 2 found that counterfactual thinking facilitated relevant intentions when these statements involved detailed information (Experiment 1) or specific behaviors (Experiment 2) compared to general information (Experiment 1), categories of behavior, or traits (Experiment 2). Experiment 3 found that counterfactuals containing a category of behavior facilitated specific behavioral intentions, relative to counterfactuals focusing on a trait. However, counterfactuals only facilitated intentions that included specific behaviors, but not when intentions focused on categories of behaviors or traits (Experiment 4). Finally, this effect generalized to other relevant specific behaviors; a counterfactual based on one relevant specific behavior facilitated an intention based on another relevant specific behavior (Experiment 5). Together, these studies further clarify our understanding of the content-specific pathway and provide a more comprehensive understanding of functional counterfactual thinking.
Resumo:
Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.
Resumo:
O objectivo deste estudo é o de investigar a intenção empreendedora. Tendo em conta a revisão bibliográfica, foi desenvolvido um modelo sobre as características pessoais dos empresários, fundamentado na teoria sobre o entrepreneurship. O modelo de investigação inclui os seguintes elementos: antecedentes pessoais, conhecimentos empresariais, motivações empreendedoras, auto-eficácia empreendedora e envolvente institucional. No capítulo sobre as conclusões deste estudo são apresentadas as implicações teóricas e práticas, assim como as limitações e sugestões para futuras investigações.
Resumo:
Material suplementar está disponível em: http://journal.frontiersin.org/article/10.3389/fpsyg. 2016.01509
Resumo:
Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and nongovernmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathway-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.
Resumo:
A differenza di quanto avviene nel commercio tradizionale, in quello online il cliente non ha la possibilità di toccare con mano o provare il prodotto. La decisione di acquisto viene maturata in base ai dati messi a disposizione dal venditore attraverso titolo, descrizioni, immagini e alle recensioni di clienti precedenti. É quindi possibile prevedere quanto un prodotto venderà sulla base di queste informazioni. La maggior parte delle soluzioni attualmente presenti in letteratura effettua previsioni basandosi sulle recensioni, oppure analizzando il linguaggio usato nelle descrizioni per capire come questo influenzi le vendite. Le recensioni, tuttavia, non sono informazioni note ai venditori prima della commercializzazione del prodotto; usando solo dati testuali, inoltre, si tralascia l’influenza delle immagini. L'obiettivo di questa tesi è usare modelli di machine learning per prevedere il successo di vendita di un prodotto a partire dalle informazioni disponibili al venditore prima della commercializzazione. Si fa questo introducendo un modello cross-modale basato su Vision-Language Transformer in grado di effettuare classificazione. Un modello di questo tipo può aiutare i venditori a massimizzare il successo di vendita dei prodotti. A causa della mancanza, in letteratura, di dataset contenenti informazioni relative a prodotti venduti online che includono l’indicazione del successo di vendita, il lavoro svolto comprende la realizzazione di un dataset adatto a testare la soluzione sviluppata. Il dataset contiene un elenco di 78300 prodotti di Moda venduti su Amazon, per ognuno dei quali vengono riportate le principali informazioni messe a disposizione dal venditore e una misura di successo sul mercato. Questa viene ricavata a partire dal gradimento espresso dagli acquirenti e dal posizionamento del prodotto in una graduatoria basata sul numero di esemplari venduti.
Resumo:
In the last few years, mobile wireless technology has gone through a revolutionary change. Web-enabled devices have evolved into essential tools for communication, information, and entertainment. The fifth generation (5G) of mobile communication networks is envisioned to be a key enabler of the next upcoming wireless revolution. Millimeter wave (mmWave) spectrum and the evolution of Cloud Radio Access Networks (C-RANs) are two of the main technological innovations of 5G wireless systems and beyond. Because of the current spectrum-shortage condition, mmWaves have been proposed for the next generation systems, providing larger bandwidths and higher data rates. Consequently, new radio channel models are being developed. Recently, deterministic ray-based models such as Ray-Tracing (RT) are getting more attractive thanks to their frequency-agility and reliable predictions. A modern RT software has been calibrated and used to analyze the mmWave channel. Knowledge of the electromagnetic properties of materials is therefore essential. Hence, an item-level electromagnetic characterization of common construction materials has been successfully achieved to obtain information about their complex relative permittivity. A complete tuning of the RT tool has been performed against indoor and outdoor measurement campaigns at 27 and 38 GHz, setting the basis for the future development of advanced beamforming techniques which rely on deterministic propagation models (as RT). C-RAN is a novel mobile network architecture which can address a number of challenges that network operators are facing in order to meet the continuous customers’ demands. C-RANs have already been adopted in advanced 4G deployments; however, there are still some issues to deal with, especially considering the bandwidth requirements set by the forthcoming 5G systems. Open RAN specifications have been proposed to overcome the new 5G challenges set on C-RAN architectures, including synchronization aspects. In this work it is described an FPGA implementation of the Synchronization Plane for an O-RAN-compliant radio system.
Resumo:
With the entry into force of the latest Italian Building Code (NTC 2008, 2018), innovative criteria were provided, especially for what concerns the seismic verifications of large infrastructures. In particular, for buildings considered as strategic, such as large dams, a seismotectonic study of the site was declared necessary, which involves a re-assessment of the basic seismic hazard. This PhD project fits into this context, being part of the seismic re-evaluation process of large dams launched on a national scale following the O.P.C.M. 3274/2003, D.L. 79/2004. A full seismotectonic study in the region of two large earth dams in Southern Italy was carried out. We identified and characterized the structures that could generate earthquakes in our study area, together with the definition of the local seismic history. This information was used for the reassessment of the basic seismic hazard, using probabilistic seismic hazard assessment approaches. In recent years, fault-based models for the seismic hazard assessment have been proposed all over the world as a new emerging methodology. For this reason, we decided to test the innovative SHERIFS approach on our study area. The occasion of the seismotectonic study gave also the opportunity to focus on the characteristics of the seismic stations that provided the data for the study itself. In the context of the work presented here, we focused on the 10 stations that had been active for the longest time and we carried out a geophysical characterization, the data of which merged into a more general study on the soil-structure interaction at seismic stations and on the ways in which it could affect the SHA. Lastly, an additional experimental study on the two dams and their associated minor structures is also presented, aimed at defining their main dynamic parameters, useful for subsequent dynamic structural and geotechnical studies.
Resumo:
Earthquake prediction is a complex task for scientists due to the rare occurrence of high-intensity earthquakes and their inaccessible depths. Despite this challenge, it is a priority to protect infrastructure, and populations living in areas of high seismic risk. Reliable forecasting requires comprehensive knowledge of seismic phenomena. In this thesis, the development, application, and comparison of both deterministic and probabilistic forecasting methods is shown. Regarding the deterministic approach, the implementation of an alarm-based method using the occurrence of strong (fore)shocks, widely felt by the population, as a precursor signal is described. This model is then applied for retrospective prediction of Italian earthquakes of magnitude M≥5.0,5.5,6.0, occurred in Italy from 1960 to 2020. Retrospective performance testing is carried out using tests and statistics specific to deterministic alarm-based models. Regarding probabilistic models, this thesis focuses mainly on the EEPAS and ETAS models. Although the EEPAS model has been previously applied and tested in some regions of the world, it has never been used for forecasting Italian earthquakes. In the thesis, the EEPAS model is used to retrospectively forecast Italian shallow earthquakes with a magnitude of M≥5.0 using new MATLAB software. The forecasting performance of the probabilistic models was compared to other models using CSEP binary tests. The EEPAS and ETAS models showed different characteristics for forecasting Italian earthquakes, with EEPAS performing better in the long-term and ETAS performing better in the short-term. The FORE model based on strong precursor quakes is compared to EEPAS and ETAS using an alarm-based deterministic approach. All models perform better than a random forecasting model, with ETAS and FORE models showing better performance. However, to fully evaluate forecasting performance, prospective tests should be conducted. The lack of objective tests for evaluating deterministic models and comparing them with probabilistic ones was a challenge faced during the study.
Resumo:
In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the treatment of major parasitic infectious diseases, with special emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that affects millions of people worldwide. In the present work, we have determined the inhibitory potency and developed descriptor- and fragment-based quantitative structure-activity relationships (QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical parameters (descriptor-based model: r² = 0.79, q² = 0.62, r²pred = 0.52; and fragment-based model: r² = 0.95, q² = 0.81, r²pred = 0.80) were obtained, indicating the potential of the models for untested compounds. The fragment-based model was then used to predict the inhibitory potency of a test set of compounds, and the predicted values are in good agreement with the experimental results
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.