919 resultados para Integrative taxonomy
Resumo:
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.
Resumo:
According to what Robert Koch termed the etiological standpoint, illnesses are best understood and controlled by focusing on their causes, including in their definitions and, thus, in the construction of their taxonomies. In some ways flawed, this standpoint has been misunderstood and misapplied. A taxonomy based solely on etiology was an unrealistic dream in the context of 'the bacteriological revolution', and it also is unrealistic in the present context of 'the genetic revolution.' We argue that the illnesses in a taxonomy of them are in some cases best defined directly in terms of their respective somatic anomalies, in some others indirectly by the unique and universal etiology of that anomaly (left unspecified) in a 'deeper' somatic anomaly, and in yet others as a combination of these; and when the somatic anomaly for direct definition remains unknown, it is to be defined indirectly by the clinical syndrome that is its patient-relevant manifestation, possibly in conjunction with a somatic cause. We note, also, that these taxonomic issues have no material bearing on epidemiologists' etiologic research for the knowledge base of community-level preventive medicine.
Resumo:
Since the discovery of the Ca(2+) spark as an elementary event of cellular Ca(2+) signaling almost 15 years ago, the family of newly described Ca(2+) signal entities has been ever growing. While scientists working in Ca(2+) signaling may have maintained an overview over the specifics of this nomenclature, those outside the field often make the complaint that they feel hopelessly lost. With the present review we collect and summarize systematic information on the many Ca(2+) signaling events described in a variety of tissues and cells, and we emphasize why and how each of them has its own importance. Most of these signals are taking place in the cytosol of the respective cells, but several events have been recorded from intracellular organelles as well, where they may serve their own specific functions. Finally, we also try to convey an integrated view as to why cellular microdomain signaling is of fundamental biological importance.
Resumo:
Along a downstream stretch of River Mure , Romania, adult males of two feral fish species, European chub (Leuciscus cephalus) and sneep (Chondrostoma nasus) were sampled at four sites with different levels of contamination. Fish were analysed for the biochemical markers hsp70 (in liver and gills) and hepatic EROD activity, as well as several biometrical parameters (age, length, wet weight, condition factor). None of the biochemical markers correlated with any biometrical parameter, thus biomarker reactions were related to site-specific criteria. While the hepatic hsp70 level did not differ among the sites, significant elevation of the hsp70 level in the gills revealed proteotoxic damage in chub at the most upstream site, where we recorded the highest heavy metal contamination of the investigated stretch, and in both chub and sneep at the site right downstream of the city of Arad. In both species, significantly elevated hepatic EROD activity downstream of Arad indicated that fish from these sites are also exposed to organic chemicals. The results were indicative of impaired fish health at least at three of the four investigated sites. The approach to relate biomarker responses to analytical data on pollution was shown to fit well the recent EU demands on further enhanced efforts in the monitoring of Romanian water quality.
Resumo:
BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications.
Resumo:
Structural and functional characterization of integrative cartilage repair in controlled model systems can play a key role in the development of innovative strategies to improve the long-term outcome of many cartilage repair procedures. In this work, we first developed a method to reproducibly generate geometrically defined disk/ring cartilage composites and to remove outgrown fibrous layers which can encapsulate cartilaginous tissues during culture. We then used the model system to test the hypothesis that such fibrous layers lead to an overestimation of biomechanical parameters of integration at the disk/ring interface. Transmission electron microscopy images of the composites after 6 weeks of culture indicated that collagen fibrils in the fibrous tissue layer were well integrated into the collagen network of the cartilage disk and ring, whereas molecular bridging between opposing disk/ring cartilage surfaces was less pronounced and restricted to regions with narrow interfacial regions (< 2 microm). Stress-strain profiles generated from mechanical push-out tests for composites with the layers removed displayed a single and distinct peak, whereas profiles for composites with the layers left intact consisted of multiple superimposed peaks. As compared to composites with removed layers, composites with intact layers had significantly higher adhesive strengths (161+/-9 vs. 71+/-11 kPa) and adhesion energies (15.0+/-0.7 vs. 2.7+/-0.4 mJ/mm2). By combining structural and functional analyses, we demonstrated that the outgrowing tissue formed during in vitro culture of cartilaginous specimens should be eliminated in order to reliably quantify biomechanical parameters related to integrative cartilage repair.