968 resultados para Inflammatory activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wild mushrooms have been extensively studied for their value as sources of high quality nutrients and of powerful physiologically bioactive compounds [1,2]. The present study was designed to evaluate the in vitro development of two wild edible mushroom species: Pleurotus eryngii (DC.) Quél. and Suillus belinii (Inzenga) Watling, by testing different solid (Potato Dextrose Agar medium –PDA and Melin-Norkans medium- MMN) and liquid culture media (Potato dextrose broth- PDB and Melin-Norkans medium- MMN). Each strain of mushroom produces a special type of mycelium and this range of characteristics varies in form, color and growth rate. S. bellinii presents a pigmented and rhizomorphic mycelia, whereas, P. eryngii has depigmented and cottony mycelia. The mycelium isolated and grown in PDA showed a faster radial growth compared to the mycelium isolated and grown in both solid and liquid incomplete MMN medium. P. eryngii exhibited a rapid growth and a higher mycelia biomass in both medium compared to S. belinii. Moreover, the obtained mycelia will be characterized in terms of well-recognized bioactive compounds namely, phenolic acids and mycosterols (mainly ergosterol), by using high performance liquid chromatography coupled to diode array and ultraviolet detectors, respectively. These compounds will be correlated to mycelia bioactivity: i) antioxidant activity, evaluated through free radicals scavenging activity, reducing power and lipid peroxidation inhibition in vitro assays; ii) anti-inflammatory activity, assessed through nitric oxide production inhibition in murine macrophages (RAW 264.7 cell line); iii) cytotoxic activity, evaluated either in human tumor cell lines (MCF-7- breast adenocarcinoma, NCIH460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma) as also in a non-tumor porcine primary liver cells culture established in-house (PLP2). Overall, our expectation is that the bioactive formulations obtained by in vitro culture can be applied as nutraceuticals or incorporated in functional foods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mushrooms are rich in several bioactive metabolites among them are phenolic compounds, terpenoids, polysaccharides, lectins, and steroids including mycosterols, namely ergosterol [1]. Ethanolic extracts prepared by maceration of several mushroom species have been recently described as having antiinflammatory properties [2]. In the present work, ethanolic extracts of Agaricus bisporus L., Lentinus edodes (Berk.) Pegler and Pleurotus ostreatus (Jacq. ex Fr.) P.Kumm., purchased from a local supermarket in the Northeast of Portugal, were obtained by Soxhlet and chemically characterized in terms of ergosterol content by HPLC-UV. The antioxidant properties of these extracts were evaluated through DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA), reducing power (RP), p. carotene bleaching inhibition (CBI) and lipid peroxidation inhibition in TBARS (thiobarbituric acid reactive substances) assay (LPI); the antioxidant activity of ergosterol was also evaluated by the DPPH assay. The anti-inflammatory activity of the same extracts and ergosterol was evaluated in LPS (lipopolysaccharide) stimulated RAW 264.7 macrophages, through the inhibition of NO production. A. bisporus revealed the highest content in ergosterol (44.8 ± 0.4 mg/ g extract) followed by P. ostreatus (34 ± 3 mg/ g extract) and finally L. edodes (8.9 ± 0.1 mg/ g extract). A. bisporus showed the highest RSA, RP and CBI (EC50 values= 7.0 ± 0.8, 2.3 ± 0.1 and 1.4 ± 0.1 mg/mL, respectively), while L. edodes presented the highest LPI (2.5 ± 0.1 mg/mL ); ergosterol revealed higher RSA (0.46±0. 0 I mg/mL) than the extracts. Concerning the anti-inflammatory potential, the most efficient species was L. edodes (lC50 value = 164 ± 16 J.lg/mL), followed by A. bisporus (185 ± 16 J.lg/mL) and finally P. ostreatus (290 ± 10 J.lg/mL). However, ergosterol presented lower activity (338 ± 23 J.lg/mL) due to its low solubility in the culture medium. The higher antioxidant properties displayed by A. bisporus can be related with its higher ergosterol content, while in the anti-inflammatory activity this relation cannot be established also due to the low solubility of ergosterol in the cells culture medium, decreasing the ergosterol availability. More studies are being conducted regarding the ergosterol solubility. Several compounds have been implicated in the bioactivity of mushrooms and in this study we have found that ergosterol can give an important contribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La sialylation des N-glycanes du fragment Fc des immunogobulines G (IgG) est une modification peu fréquente des IgG humaines. Pourtant, elle est l’objet de beaucoup d’attention depuis que deux articles fondateurs ont été publiés, qui montrent l’un que la sialylation des IgG diminue leur capacité à déclencher la cytotoxicité cellulaire dépendant de l’anticorps (ADCC), et l’autre que les IgG sialylées en α2,6 seraient la fraction efficace des IgG intraveineuses (IgIV) anti-inflammatoires. Les anticorps monoclonaux thérapeutiques, qui sont le plus souvent des IgG recombinantes produites en culture de cellules de mammifère, connaissent depuis la fin des années 90 un succès et une croissance phénoménaux sur le marché pharmaceutique. La maîtrise de la N-glycosylation du Fc des IgG est une clé de l’efficacité des anticorps monoclonaux. Si les IgG sialylées sont des molécules peu fréquentes in vivo, elles sont très rares en culture cellulaire. Dans cette étude, nous avons développé une méthode de production d’IgG avec une sialylation de type humain en cellules CHO. Nous avons travaillé principalement sur la mise au point d’une stratégie de production d’IgG sialylées par co-expression transitoire d’une IgG1 avec la β1,4-galactosyltransférase I (β4GTI) et la β-galactoside-α2,6-sialyltransférase I (ST6GalI). Nous avons montré que cette méthode permettait d’enrichir l’IgG1 en glycane fucosylé di-galactosylé mono-α2,6-sialylé G2FS(6)1, qui est le glycane sialylé présent sur les IgG humaines. Nous avons ensuite adapté cette méthode à la production d’IgG présentant des profils de glycosylation riches en acides sialiques, riches en galactose terminal, et/ou appauvris en fucosylation. L’analyse des profils de glycosylation obtenus par la co-expression de diverses combinaisons enzymatiques avec l’IgG1 native ou une version mutante de l’IgG1 (F243A), a permis de discuter des influences respectives de la sous-galactosylation des IgG1 en CHO et des contraintes structurales du Fc dans la limitation de la sialylation des IgG en CHO. Nous avons ensuite utilisé les IgG1 produites avec différents profils de glycosylation afin d’évaluer l’impact de la sialylation α2,6 sur l’interaction de l’IgG avec le récepteur FcγRIIIa, principal récepteur impliqué dans la réponse ADCC. Nous avons montré que la sialylation α2,6 augmentait la stabilité du complexe formé par l’IgG avec le FcγRIIIa, mais que ce bénéfice n’était pas directement traduit par une augmentation de l’efficacité ADCC de l’anticorps. Enfin, nous avons débuté le développement d’une plateforme d’expression stable d’IgG sialylées compatible avec une production à l’échelle industrielle. Nous avons obtenu une lignée capable de produire des IgG enrichies en G2FS(6)1 à hauteur de 400 mg/L. Cette étude a contribué à une meilleure compréhension de l’impact de la sialylation sur les fonctions effectrices des IgG, et a permis d’augmenter la maîtrise des techniques de modulation du profil de glycosylation des IgG en culture cellulaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the heparin has been the subject of several studies that aim to expand its use as a therapeutic agent, due to its ability to modulate the activity of various proteins that play important roles in the regulation of pathophysiological processes. In several experiments and preclinical trials, heparin has demonstrated an anti-inflammatory role. However, its clinical use is limited, due to its strong anticoagulant activity and hemorrhagic complications. For this reason, considerable efforts have been employed in discovery of heparin analogous (heparinoid) with reduced side effects, that retain the anti-inflammatory properties of heparin. In this context, a heparinoid obtained from the head of Litopenaeus vannamei shrimp, which presents a structural similarity to heparin, showed, in previous studies, anti-inflammatory activity in a model of acute peritonitis with reduced anticoagulant effect in vitro and low hemorrhagic activity. Thus, the present work had as objective to evaluate the effect the heparinoid of the cephalothorax of gray shrimp on the acute inflammatory response in different times (3 or 6 hours after the induction of inflammatory stimulus), using the model of acute peritonitis induced in mice. It was also analyzed the HL effect over the activity of elastase, an enzyme involved in leukocyte recruitment. Furthermore to check if the different doses of heparin and heparinoid change the hemostatic balance in vivo, was assessed the effect of these compounds on the plasma clotting time in animals submitted to inflammation. The results show that in 3 hours, all doses of heparinoid were able to prevent efficiently in the acute inflammatory process without any anticoagulant effects, unlike the extrapolation dose of heparin, which has induced a large hemorrhage due its high anticoagulant activity. However, 6 hours after induction of inflammation, only the dosages of 0.1 and 1.0 μg/Kg of heparin and 1.0 μg/Kg of heparinoid kept anti-migratory effect, without changing of the hemostatic balance. These results indicate that the anti-migratory effect of theses compounds depends on the dosage and time of inflammatory stimulus. The HL and heparin were also able to inhibit the activity of the enzyme elastase. The discovery of this bioactive compound in the cephalothorax of shrimps can arouse great interest in biotechnology, since this compound could be useful as a structural model interesting for the development of new therapeutic agents for peritonitis

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is systemic auto imune disorder. It is caracterized by chronic inflammation of joints leading to progressive erosion of cartilage and bone. We investigated the effect of the administration of fucoidan, sulfated polysaccharides, from algae Fucus vesiculosus in the acute (6h) in zymosan-induced arthritis (AZy). Wistar rats (180-230 g) were used for all groups experimental. Non-treated animals received just intraarticular injection of 1 mg the zymosan, control group received intraarticular injection of 50 µL the saline, groups received either fucoidan of Fucus vesiculosus (15, 30, 50 or 70 mg/Kg) or parecoxib (1 mg/Kg) 1 hour after injection of zymosan. After 6 h, the articular exudates were collected for evaluation of the cell influx and nitrite (Griess reaction) release. The sinovial membranes and articular cartilages were excised for histopathological analysis and by determination of the glycosaminoglycan (GAG), respectively. ZyA led to increased NO and cell influx into the joints. Therapeutic administration of the fucoidan or parecoxib did significantly inhibited the cell influx and the synovitis, as compared to non-treated rats (p<0,05), though being able to reduced NO release. Representative agarose gel electrophoresis of the GAGs, the content of condroitin-sulphate was observed during the process. These findings suggest that the fucoidan from Fucus vesiculosus has potential anti-inflammatory activity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phytochemical profiles and bioactivities of red, white and pink globe amaranth (Gomphrena haageana K., Gomphrena globosa var. albiflora and Gomphrena sp., respectively), much less studied than the purple species (G. globosa L.), were compared. The chemical characterization of the samples included the analysis of macronutrients and individual profiles of sugars, organic acids, fatty acids, tocopherols, and phenolic compounds. Their bioactivity was evaluated by determining the antioxidant and anti-inflammatory activities; the absence of cytotoxicity was also determined. Red and pink samples showed the highest sugar content. Otherwise, the white sample gave the highest level of organic acids, and together with the pink one showed the highest tocopherol and PUFA levels. Quercetin-3-O-rutinoside was the major flavonol in white and pink samples, whereas a tetrahydroxy-methylenedioxyflavone was the major compound in the red variety, which revealed a different phenolic profile. The pink globe amaranth hydromethanolic extract revealed the highest antioxidant activity, followed by those of red and white samples. The anti-inflammatory activity was more relevant in red and pink varieties. None of the samples presented toxicity in liver cells. Overall, these samples can be used in bioactive formulations against inflammatory processes and in free radical production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flavonoids, coumarins and other polyphenolic compounds are powerful antioxiants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. Despite being widely used as powerful therapeutic agents for blood coagulation disorders, more specifically to control some serine protease enzymes, the mechanism of anti-inflammatory activity of coumarins is unknown, unlike that of flavonoids. Although their controlling effect on serine proteases is well acknowledged, their action on secretory phospholipase A2 (sPLA2) remains obscure. The present study describes the interaction between umbelliferone (7-HOC) and the sPLA2 from Crotalus durissus collilineatus venom. In vitro inhibition of sPLA2 enzymatic activity by 7-HOC was estimated using 4N3OBA as substrate, resulting in an irreversible decrease in such activity proportional to 7-HOC concentration. The biophysical interaction between 7-HOC and sPLA2 was examined by fluorescent spectral analysis and circular dichroism studies. Results from both techniques clearly showed that 7-HOC strongly modified the secondary structure of this enzyme and CD spectra revealed that it strongly decreased sPLA2 alphahelical conformation. In addition, two-dimensional electrophoresis indicated an evident difference between HPLC-purified native and 7-HOC-treated sPLA2s, which were used in pharmacological experiments to compare their biological activities. In vivo anti-inflammatory activity was assessed by the sPLA2-induced mouse paw edema model, in which 7-HOC presented an effect similar to those of dexamethasone and cyproheptacline against the pro-inflammatory effect induced by native sPLA2 on the mouse paw edema, mast cell degranulation and skin edema. on the other hand, 7-HOC exhibited a more potent inhibitory effect on sPUL2 than that of p-bromophenacyl bromide (p-BPB). Our data suggest that 7-HOC interacts with sPLA2 and causes some structural modifications that lead to a sharp decrease or inhibition of the edematogenic and myotoxic activities of this enzyme, indicating its potential use to suppress inflammation induced by sPLA2 from the snake venom. (C) 2008 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Molecular, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the in vitro antioxidant and anti-neuroinflammatory effects of Suaeda asparagoides ethylacetate extract (SAE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Methods: The antioxidative activity of SAE was evaluated by measuring 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity spectrometrometrically. Cell viability was evaluated by 3-(4, 5dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium bromide (MTT) assay, while LPS-stimulated BV-2 microglia were used to study the expression and production of inflammatory mediators, including nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis alpha (TNF-α). Results: Pretreatment with SAE prior to LPS treatment significantly inhibited excessive production of NO (p < 0.001 at 20, 40, 80 and 100 μg/mL) in a dose-dependent manner, and was associated with down-regulation of expression of inducible nitric oxide synthase (iNOS). SAE also suppressed the LPSinduced increase in TNF-α level (p < 0.01at concentrations of 40 and 80 μg/mL) in BV-2 cells. Furthermore, DPPH-generated free radicals were inhibited by SAE in a concentration-dependent manner. Conclusion: These results indicate that SAE possesses strong anti-oxidant properties, and inhibits excessive production of pro-inflammatory mediators, including NO, iNOS and TNF-α, in LPS-stimulated BV-2 cells

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant, anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury. Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard. Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injury rat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard. Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was carried out to evaluate the chemical and pharmacological properties of essential oil (EO) of Lavandula stoechas L. subsp. luisieri that is a spontaneous shrub widespread in Alentejo (Portugal). Oxygenated monoterpenes, as 1,8-cineole, lavandulol and necrodane derivatives are the main components of essential oil. It revealed important antioxidant activity with high ability to inhibit the lipid peroxidation and showed an outstanding effect against a wide spectrum of microorganisms, such as Gram-positive and Gram-negative bacteria and pathogenic yeasts. The analgesic effect studied in rats was dose dependent, reaching a maximum of 67 % at 60 min. with the dose of 200 mg/kg and the anti-inflammatory activity with this dose caused an inhibition in carrageenan-induced rat paw oedema (83 %) that is higher than dexamethasone 1 mg/Kg (69 %). Besides, animals exhibited a normal behaviour after EO administration revealing low toxicity. Essential oil of L. luisieri from Alentejo that presents important pharmacological properties and low toxicity is a promised candidate to be used as food supplement or in pharmaceutical applications.