870 resultados para Indian courts
Resumo:
Global efforts in macromolecular crystallography started in the thirties of the last century. However, definitive results began to emerge only in the late fifties and the early sixties. India has a long tradition in crystallography. The country had a head start in theoretical and computational structural biology, thanks to the efforts of G.N. Ramachandran and his colleagues in the fifties and the sixties. However, macromolecular crystallography got off the ground in India only in the eighties, particularly after the Bangalore group received adequate support from the Department of Science and Technology under their Thrust Area Programme. The Bangalore centre was also identified as a national nucleus for the development of the area in the country. Since then work in the area has spread widely and is being carried out by several groups, mainly led by scientists trained at Bangalore or their descendents, in about thirty institutions in India. In addition to the Department of Science and Technology, the effort is now supported by other agencies like the Department of Biotechnology and the Council of Scientific and Industrial Research. The problems addressed by macromolecular crystallographers in India encompass almost all aspects of modern biology. Indian efforts in macromolecular crystallography have also become an important component of the international efforts in the area.
Resumo:
Sacred groves are patches of forests preserved for their spiritual and religious significance. The practice gained relevance with the spread of agriculture that caused large-scale deforestation affecting biodiversity and watersheds. Sacred groves may lose their prominence nowadays, but are still relevant in Indian rural landscapes inhabited by traditional communities. The recent rise of interest in this tradition encouraged scientific study that despite its pan-Indian distribution, focused on India's northeast, Western Ghats and east coast either for their global/regional importance or unique ecosystems. Most studies focused on flora, mainly angiosperms, and the faunal studies concentrated on vertebrates while lower life forms were grossly neglected. Studies on ecosystem functioning are few although observations are available. Most studies attributed watershed protection values to sacred groves but hardly highlighted hydrological process or water yield in comparison with other land use types. The grove studies require diversification from a stereotyped path and must move towards creating credible scientific foundations for conservation. Documentation should continue in unexplored areas but more work is needed on basic ecological functions and ecosystem dynamics to strengthen planning for scientifically sound sacred grove management.
Resumo:
The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.
Resumo:
We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present a comparison of the Global Ocean Data Assimilation System (GODAS) five-day ocean analyses against in situ daily data from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at locations 90 degrees E, 12 degrees N; 90 degrees E, 8 degrees N; 90 degrees E, 0 degrees N and 90 degrees E, 1.5 degrees S in the equatorial Indian Ocean and the Bay of Bengal during 2002-2008. We find that the GODAS temperature analysis does not adequately capture a prominent signal of Indian Ocean dipole mode of 2006 seen in the mooring data, particularly at 90 degrees E 0 degrees N and 90 degrees E 1.5 degrees S in the eastern India Ocean. The analysis, using simple statistics such as bias and root-mean-square deviation, indicates that standard GODAS temperature has definite biases and significant differences with observations on both subseasonal and seasonal scales. Subsurface salinity has serious deficiencies as well, but this may not be surprising considering the poorly constrained fresh water forcing, and possible model deficiencies in subsurface vertical mixing. GODAS reanalysis needs improvement to make it more useful for study of climate variability and for creating ocean initial conditions for prediction.
Resumo:
A new evaluation of the elastic thickness (Te) structure of the Indian Shield, derived from isotropic fan wavelet methodology, documents spatial variations of lithospheric deformation in different tectonic provinces correlated with episodic tectono-thermal events. The Te variations corroborated by shear velocity, crustal thickness, and seismogenic thickness reveal the heterogeneous rheology of the Indian lithosphere. The thinned, attenuated lithosphere beneath Peninsular India is considered to be the reason for its mechanically weak strength (<30 km), where a decoupled crust-mantle rheology under different surface/subsurface loading structures may explain the prominent low Te patterns. The arcuate Te structure of the Western Dharwar province and a NNE-trending band of low Te anomaly in the Southern Granulite Terrane are intriguing patterns. The average Te values (40-50 km) of the Central Indian Tectonic Zone, the Bastar Craton, and the northern Eastern Ghats Mobile Belt are suggestive of old, stable, Indian lithosphere, which was not affected by any major tectono-thermal events after cratonic stabilization. We propose that the anomalously high Te (60-85 km) and high S-wave velocity zone to the north of the Narmada-Son Lineament, mainly in NW Himalaya, and the northern Aravalli and Bundelkhand Cratons, suggest that Archean lithosphere characterized by a high velocity mantle keel supports the orogenic topographic loads in/near the Himalaya. The Te map clearly segments the volcanic provinces of the Indian Shield, where the signatures of the Reunion, Marion, and Kerguelen hotspots are indicated by significantly low Te patterns that correlate with plume- and rift-related thermal and mechanical rejuvenation, magmatic underplating, and crustal necking. The correlations between Te variations and the occurrence of seismicity over seismically active zones reveal different causal relationships, which led to the current seismogenic zonation of the Indian Shield. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The 11 April 2012 earthquakes (M-w 8.6 and M-w 8.2) were sourced within the Northern Wharton Basin in the northeastern part of the Indo-Australian diffuse plate boundary. This unusually active oceanic intraplate region has generated many large earthquakes in the past, most of which are believed to have occurred by strike-slip motion, triggered by the NW-SE oriented compressional stresses acting across the Indian and Australian plates. In the aftermath of the 2004 megathrust earthquake along the nearby Sunda Trench, increased seismicity in the Northern Wharton Basin is attributed to the stress transfer from the Sumatra-Andaman plate boundary. Models proposed for the April 2012 earthquakes differ somewhat in details but partly attribute their complex rupture to the reactivation of pre-existing structures. These structures include previously mapped N-S trending fracture zones within the Northern Wharton Basin and E-W lineations across the Ninetyeast Ridge. In this paper, we review the regional tectonics and past seismicity on the Indo-Australian Plate in order to understand the seismotectonic setting of the April 2012 Indian Ocean earthquakes. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The tonic is a fundamental concept in Indian art music. It is the base pitch, which an artist chooses in order to construct the melodies during a rg(a) rendition, and all accompanying instruments are tuned using the tonic pitch. Consequently, tonic identification is a fundamental task for most computational analyses of Indian art music, such as intonation analysis, melodic motif analysis and rg recognition. In this paper we review existing approaches for tonic identification in Indian art music and evaluate them on six diverse datasets for a thorough comparison and analysis. We study the performance of each method in different contexts such as the presence/absence of additional metadata, the quality of audio data, the duration of audio data, music tradition (Hindustani/Carnatic) and the gender of the singer (male/female). We show that the approaches that combine multi-pitch analysis with machine learning provide the best performance in most cases (90% identification accuracy on average), and are robust across the aforementioned contexts compared to the approaches based on expert knowledge. In addition, we also show that the performance of the latter can be improved when additional metadata is available to further constrain the problem. Finally, we present a detailed error analysis of each method, providing further insights into the advantages and limitations of the methods.
Resumo:
The low level, denuded, laterite landscape of coastal Uttara Kannada has a rich diversity of monsoon herbs, including threatened and newly discovered ones. Our study reveals that honey bees congregate on the ephemeral herb community of Utricularias, Eriocaulons and Impatiens during their gregarious monsoon flowering period. Apis dorsata had highest visitations on Utricularias, Impatiens and Flacourtia indica, whereas Trigona preferred Eriocaulons. Laterite herb flora merits conservation efforts as a keystone food resource for the insect community, especially for honey bees.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.
Resumo:
Protection-based ant-plant mutualisms may vary in strength due to differences in ant rewards, abundance of protective ants and herbivory pressure. We investigated geographical and temporal variation in host plant traits and herbivory pressure at five sites spanning the distribution range of the myrmecophyte Humboldtia brunonis (Fabaceae) in the Indian Western Ghats. Southern siteshad, onaverage, 2.4 times greater abundance of domatia-bearing individuals, 1.6 times greater extrafloral nectary numbers per leaf, 1.2 times larger extrafloral nectary sizes, 2.2 times greater extrafloral nectar (EFN) volumes and a two-fold increase in total amino acid and total sugar concentrations in EFN compared with northern sites. Astrong protection-based mutualismwith ants occurred at only one southern site where herbivory was highest, suggesting that investments in attracting ants correlate with anti-herbivore benefits gained from the presence of protective ants. Our results confirm a temporally stable north-south gradient in myrmecophytic traits in this ant-plant as several of these traits were re-sampled after a 5-y interval. However, the chemical composition of EFN varied at both spatial and short-term temporal scales suggesting that only repeated measurements of rewards such as EFN can reveal the real spectrum of trait variation in an ant-plant mutualistic system.
Resumo:
Purpose: Weill-Marchesani syndrome (WMS) is a rare connective tissue disorder, characterized by short stature, micro-spherophakic lens, and stubby hands and feet (brachydactyly). WMS is caused by mutations in the FBN1, ADAMTS10, and LTBP2 genes. Mutations in the LTBP2 and ADAMTS17 genes cause a WMS-like syndrome, in which the affected individuals show major features of WMS but do not display brachydactyly and joint stiffness. The main purpose of our study was to determine the genetic cause of WMS in an Indian family. Methods: Whole exome sequencing (WES) was used to identify the genetic cause of WMS in the family. The cosegregation of the mutation was determined with Sanger sequencing. Reverse transcription (RT)-PCR analysis was used to assess the effect of a splice-site mutation on splicing of the ADAMTS17 transcript. Results: The WES analysis identified a homozygous novel splice-site mutation c.873+1G>T in a known WMS-like syndrome gene, ADAMTS17, in the family. RT-PCR analysis in the patient showed that exon 5 was skipped, which resulted in the deletion of 28 amino acids in the ADAMTS17 protein. Conclusions: The mutation in the WMS-like syndrome gene ADAMTS17 also causes WMS in an Indian family. The present study will be helpful in genetic diagnosis of this family and increases the number of mutations of this gene to six.
Resumo:
The M-w 8.6 and 8.2 strike-slip earthquakes that struck the northeast Indian Ocean on 11 April 2012 resulted in coseismic deformation both at near and distant sites. The slip distribution, deduced using seismic-wave analysis for the orthogonal faults that ruptured during these earthquakes, is sufficient to predict the coseismic displacements at the Global Positioning System (GPS) sites, such as NTUS, PALK, and CUSV, but fall short at four continuous sites in the Andaman Islands region. Slip modeling, for times prior to the events, suggests that the lower portion of the thrust fault beneath the Andaman Islands has been slipping at least at the rate of 40 cm/yr, in response to the 2004 Sumatra-Andaman coseismic stress change. Modeling of GPS displacements suggests that the en echelon and orthogonal fault ruptures of the 2012 intraplate oceanic earthquakes could have possibly accelerated the ongoing slow slip, along the lower portion of the thrust fault beneath the islands with a month-long slip of 4-10 cm. The misfit to the coseismic GPS displacements along the Andaman Islands could be improved with a better source model, assuming that no local process contributed to this anomaly.