951 resultados para In-loop-simulations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brazil faces a complex problem in respect to municipal solid waste, having been in recent years an increase of its generation without the country there be adequate for proper disposal thereof. In many states , the percentage of waste destined improperly , ie , in dumps , landfills, send- outs , among others , is greater than that disposed in landfills , which would be the most correct way to be made. It can be argued that this discrepancy is due to the high cost of implementation and operation of the landfill, and the same need large areas with physical characteristics that suit their operations . When there is a provision in properly constructed landfills , municipal solid waste grounded generate gases with high potential energy through biochemical reactions during the anaerobic decomposition of organic material stored . Such gases can be used for power generation within the landfill or other economic means . To estimate the gas generation will be sufficient for such economic compensation , there are mathematical models that make estimating the amount of gas produced . These models calculate the energy capacity and generation , using parameters obtained based on the characteristics of solid waste , climate of the region where they are grounded and grounding time . Such models have been raised and studied so that it was possible to perform simulations that demonstrate the behavior of biogas generation related to the external conditions of the landfill that interfere with biological reactions within. The results show differences between the values obtained , it shows that the preparation of the models found and used in the simulations were allocated amounts for different parameters that determine this difference in the estimate . Therefore, to rule, the models have difficulty understanding this because there is no clarity in the formulation of the equations , and the definition of variables and parameters would require a detailed study to...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposed a two-dimensional spatial model to describe the adaptive immune response for viral hepatitis B. This model considered six populations: healthy hepatocytes T, infected hepatocytes Y , hepatitis B virus V , innate immune system I, active immune system X and memory cells, X. First, a compartmental model was constructed and its equilibrium solutions and also the threshold values related to the stability of each solution were obtained. Using this model, we was able to reproduce the different trends observed for the disease, which are: individuals that eliminate the infection without forming immune response, patients with acute and chronic carriers. By including dispersion of defense cells of the immune system and virus (spatial model), we analyze two situations: homogeneous model, in which the model parameters are the same at all points of the network, and heterogeneous model, which characterizes cells more permeable and less permeable to virus invasion. For the two spatial models (homogeneous and heterogeneous) the times relatead to the viral erradication and/or virus invasion and persistence becoming smaller in relation to the compartmental model. The results also showed that for the set of values used in the simulations and if the two diffusion rates are different from zero, the model is sensitive to variations in the rate of viral spread and not dependent on the dispersion of memory cells. Finally, the heterogeneous model when compared to the homogeneous model shows that the infection can be spatially limited depending on the type of the cell involved in the infection process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we report original measurements of total cross sections (TCSs) for positron scattering from the cyclic ethers oxirane (C2H4O), 1,4-dioxane (C4H8O2), and tetrahydropyran (C5H10O). The present experiments focus on the low energy range from similar to 0.2 to 50 eV, with an energy resolution smaller than 300 meV. This study concludes our systematic investigation into TCSs for a class of organic compounds that can be thought of as sub-units or moieties to the nucleotides in living matter, and which as a consequence have become topical for scientists seeking to simulate particle tracks in matter. Note that as TCSs specify the mean free path between collisions in such simulations, they have enjoyed something of a recent renaissance in interest because of that application. For oxirane, we also report original Schwinger multichannel elastic integral cross section (ICS) calculations at the static and static plus polarisation levels, and with and without Born-closure that attempts to account for the permanent dipole moment of C2H4O. Those elastic ICSs are computed for the energy range 0.5-10 eV. To the best of our knowledge, there are no other experimental results or theoretical calculations against which we can compare the present positron TCSs. However, electron TCSs for oxirane (also known as ethylene oxide) and tetrahydropyran do currently exist in the literature and a comparison to them for each species will be presented. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696378]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents numerical simulations of two fluid flow problems involving moving free surfaces: the impacting drop and fluid jet buckling. The viscoelastic model used in these simulations is the eXtended Pom-Pom (XPP) model. To validate the code, numerical predictions of the drop impact problem for Newtonian and Oldroyd-B fluids are presented and compared with other methods. In particular, a benchmark on numerical simulations for a XPP drop impacting on a rigid plate is performed for a wide range of the relevant parameters. Finally, to provide an additional application of free surface flows of XPP fluids, the viscous jet buckling problem is simulated and discussed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results.