925 resultados para Implant-based breast reconstruction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target regions, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. Our proposition reduces, or even eliminates, infrastructure cost and human efforts during the construction of realistic 3D scenes used in radio propagation modeling. In addition, the results obtained from our propagation model proves to be both accurate and efficient

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target region, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. By comparing with other methods, the work presented in this paper makes contributions on reducing human efforts and cost in constructing 3D scene; moreover, the developed propagation model proves its potential in both accuracy and efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vector reconstruction of objects from an unstructured point cloud obtained with a LiDAR-based system (light detection and ranging) is one of the most promising methods to build three dimensional models of orchards. The cylinder fitting method for woody structure reconstruction of leafless trees from point clouds obtained with a mobile terrestrial laser scanner (MTLS) has been analysed. The advantage of this method is that it performs reconstruction in a single step. The most time consuming part of the algorithm is generation of the cylinder direction, which must be recalculated at the inclusion of each point in the cylinder. The tree skeleton is obtained at the same time as the cluster of cylinders is formed. The method does not guarantee a unique convergence and the reconstruction parameter values must be carefully chosen. A balanced processing of clusters has also been defined which has proven to be very efficient in terms of processing time by following the hierarchy of branches, predecessors and successors. The algorithm was applied to simulated MTLS of virtual orchard models and to MTLS data of real orchards. The constraints applied in the method have been reviewed to ensure better convergence and simpler use of parameters. The results obtained show a correct reconstruction of the woody structure of the trees and the algorithm runs in linear logarithmic time

Relevância:

40.00% 40.00%

Publicador:

Resumo:

3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts) were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fourier transform-infrared/statistics models demonstrate that the malignant transformation of morphologically normal human ovarian and breast tissues involves the creation of a high degree of structural modification (disorder) in DNA, before restoration of order in distant metastases. Order–disorder transitions were revealed by methods including principal components analysis of infrared spectra in which DNA samples were represented by points in two-dimensional space. Differences between the geometric sizes of clusters of points and between their locations revealed the magnitude of the order–disorder transitions. Infrared spectra provided evidence for the types of structural changes involved. Normal ovarian DNAs formed a tight cluster comparable to that of normal human blood leukocytes. The DNAs of ovarian primary carcinomas, including those that had given rise to metastases, had a high degree of disorder, whereas the DNAs of distant metastases from ovarian carcinomas were relatively ordered. However, the spectra of the metastases were more diverse than those of normal ovarian DNAs in regions assigned to base vibrations, implying increased genetic changes. DNAs of normal female breasts were substantially disordered (e.g., compared with the human blood leukocytes) as were those of the primary carcinomas, whether or not they had metastasized. The DNAs of distant breast cancer metastases were relatively ordered. These findings evoke a unified theory of carcinogenesis in which the creation of disorder in the DNA structure is an obligatory process followed by the selection of ordered, mutated DNA forms that ultimately give rise to metastases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.