878 resultados para Immunology and Infectious Disease
Resumo:
We thank Karim Gharbi and Urmi Trivedi for their assistance with RNA sequencing, carried out in the GenePool genomics facility (University of Edinburgh). We also thank Susan Fairley and Eduardo De Paiva Alves (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) for help with the initial bioinformatics analysis. We thank Aaron Mitchell for kindly providing the ALS3 mutant, Julian Naglik for the gift of TR146 cells, and Jon Richardson for technical assistance. We thank the Genomics and Bioinformatics core of the Faculty of Health Sciences for Next Generation Sequencing and Bioinformatics support, the Information and Communication Technology Office at the University of Macau for providing access to a High Performance Computer and Jacky Chan and William Pang for their expert support on the High Performance Computer. Finally, we thank Amanda Veri for generating CaLC2928. M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), R.A.F. by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship, L.E.C. by a Canada Research Chair in Microbial Genomics and Infectious Disease and by Canadian Institutes of Health Research Grants MOP-119520 and MOP-86452, A.J. P.B. was supported by the UK Biotechnology and Biological Sciences Research Council (BB/F00513X/1) and by the European Research Council (ERC-2009-AdG-249793-STRIFE), KHW is supported by the Science and Technology Development Fund of Macau S.A.R (FDCT) (085/2014/A2) and the Research and Development Administrative Office of the University of Macau (SRG2014-00003-FHS) and R.T.W. by the Burroughs Wellcome fund and NIH R15AO094406. Data availability RNA-sequencing data sets are available at ArrayExpress (www.ebi.ac.uk) under accession code E-MTAB-4075. ChIP-seq data sets are available at the NCBI SRA database (http://www.ncbi.nlm.nih.gov) under accession code SRP071687. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding author upon request.
Resumo:
Peptides corresponding to the immunodominant loop located at residues 135–158 on capsid protein VP1 of foot-and-mouth disease virus (FMDV) generally elicit high levels of anti-peptide and virus-neutralizing antibodies. In some instances, however, the level of neutralizing antibodies is low or even negligible, even though the level of anti-peptide antibodies is high. We have shown previously that the antigenic activity of peptide 141–159 of VP1 of a variant of serotype A can be mimicked by a retro-inverso (all-d retro or retroenantio) peptide analogue. This retro-inverso analogue induced greater and longer-lasting antibody titers than did the corresponding l-peptide. We now show that a single inoculation of the retro-inverso analogue elicits high levels of neutralizing antibodies that persist longer than those induced against the corresponding l-peptide and confer substantial protection in guinea pigs challenged with the cognate virus. In view of the high stability to proteases of retro-inverso peptide analogues and their enhanced immunogenicity, these results have practical relevance in designing potential peptide vaccines.
Resumo:
The serpins are a family of proteinase inhibitors that play a central role in the control of proteolytic cascades. Their inhibitory mechanism depends on the intramolecular insertion of the reactive loop into β-sheet A after cleavage by the target proteinase. Point mutations within the protein can allow aberrant conformational transitions characterized by β-strand exchange between the reactive loop of one molecule and β-sheet A of another. These loop-sheet polymers result in diseases as varied as cirrhosis, emphysema, angio-oedema, and thrombosis, and we recently have shown that they underlie an early-onset dementia. We report here the biochemical characteristics and crystal structure of a naturally occurring variant (Leu-55–Pro) of the plasma serpin α1-antichymotrypsin trapped as an inactive intermediate. The structure demonstrates a serpin configuration with partial insertion of the reactive loop into β-sheet A. The lower part of the sheet is filled by the last turn of F-helix and the loop that links it to s3A. This conformation matches that of proposed intermediates on the pathway to complex and polymer formation in the serpins. In particular, this intermediate, along with the latent and polymerized conformations, explains the loss of activity of plasma α1-antichymotrypsin associated with chronic obstructive pulmonary disease in patients with the Leu-55–Pro mutation.
Resumo:
Objective To assess the effect of additional training of practice nurses and general practitioners in patient centred care on the lifestyle and psychological and physiological status of patients with newly diagnosed type 2 diabetes.
Resumo:
Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.
Resumo:
To gain entry into cells, viruses utilize a variety of different cell-surface molecules. Foot-and-mouth disease virus (FMDV) binds to cell-surface integrin molecules via an arginine-glycine-aspartic acid (RGD) sequence in capsid protein VP1. Binding to this particular cell-surface molecule influences FMDV tropism, and virus/receptor interactions appear to be responsible, in part, for selection of antigenic variants. To study early events of virus-cell interaction, we engineered an alternative and novel receptor for FMDV. Specifically, we generated a new receptor by fusing a virus-binding, single-chain antibody (scAb) to intracellular adhesion molecule 1 (ICAM1). Cells that are normally not susceptible to FMDV infection became susceptible after being transfected with DNA encoding the scAb/ICAM1 protein. An escape mutant (B2PD.3), derived with the mAb used to generate the genetically engineered receptor, was restricted for growth on the scAb/ICAM1 cells, but a variant of B2PD.3 selected by propagation on scAb/ICAM1 cells grew well on these cells. This variant partially regained wild-type sequence in the epitope recognized by the mAb and also regained the ability to be neutralize by the mAb. Moreover, RGD-deleted virions that are noninfectious in animals and other cell types grew to high titers and were able to form plaques on scAb/ ICAM1 cells. These studies demonstrate the first production of a totally synthetic cell-surface receptor for a virus. This novel approach will be useful for studying virus reception and for the development of safer vaccines against viral pathogens of animals and humans.
Resumo:
Equine rhinovirus 1 (ERhV1) is a respiratory pathogen of horses which has an uncertain taxonomic status. We have determined the nucleotide sequence of the ERhV1 genome except for a small region at the 5' end. The predicted polyprotein was encoded by 6741 nucleotides and possessed a typical picornavirus proteolytic cleavage pattern, including a leader polypeptide. The genomic structure and predicted amino acid sequence of ERhV1 were more similar to those of foot-and-mouth disease viruses (FMDVs), the only members of the aphthovirus genus, than to those of other picornaviruses. Features which were most similar to FMDV included a 16-amino acid 2A protein which was 87.5% identical in sequence of FMDV 2A, a leader (L) protein similar in size to FMDV Lab and the possibility of a truncated L protein similar in size to FMDV Lb, and a 3C protease which recognizes different cleavage sites. However, unlike FMDV, ERhV1 had only one copy of the 3B (VPg) polypeptide. The phylogenetic relationships of the ERhV1 sequence and nucleotide sequences of representative species of the five genera of the family Picornaviridae were examined. Nucleotide sequences coding for the complete polyprotein, the RNA polymerase, and VP1 were analyzed separately. The phylogenetic trees confirmed that ERhV1 was more closely related to FMDV than to other picornaviruses and suggested that ERhV1 may be a member, albeit very distant, of the aphthovirus genus.
Resumo:
Inheritance of specific apolipoprotein E (apoE) alleles determines, in large part, the risk and mean age of onset of late-onset familial and sporadic Alzheimer disease. The mechanism by which the apoE isoforms differentially contribute to disease expression is, however, unknown. Isoform-specific differences have been identified in the binding of apoE to the microtubule-associated protein tau, which forms the paired helical filament and neurofibrillary tangles, and to amyloid beta peptide, a major component of the neuritic plaque. These and other isoform-specific interactions of apoE give rise to testable hypotheses for the mechanism(s) of pathogenesis of Alzheimer disease. An unresolved issue of increasing importance is the relationship between the structural pathological lesions and the cellular pathogenesis responsible for the clinical disease phenotype, progressive dementia. The identification of apoE in the cytoplasm of human neurons and the characterization of isoform-specific binding of apoE to the microtubule-associated proteins tau and MAP-2 present the possibility that apoE may affect microtubule function in the Alzheimer brain.