970 resultados para Identification test AUDIT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the processes involved in rational patient targeting may be obvious for certain services, for others, both the appropriate sub-populations to receive services and the procedures to be used for their identification may be unclear. This project was designed to address several research questions which arise in the attempt to deliver appropriate services to specific populations. The related difficulties are particularly evident for those interventions about which findings regarding effectiveness are conflicting. When an intervention clearly is not beneficial (or is dangerous) to a large, diverse population, consensus regarding withholding the intervention from dissemination can easily be reached. When findings are ambiguous, however, conclusions may be impossible.^ When characteristics of patients likely to benefit from an intervention are not obvious, and when the intervention is not significantly invasive or dangerous, the strategy proposed herein may be used to identify specific characteristics of sub-populations which may benefit from the intervention. The identification of these populations may be used both in further informing decisions regarding distribution of the intervention and for purposes of planning implementation of the intervention by identifying specific target populations for service delivery.^ This project explores a method for identifying such sub-populations through the use of related datasets generated from clinical trials conducted to test the effectiveness of an intervention. The method is specified in detail and tested using the example intervention of case management for outpatient treatment of populations with chronic mental illness. These analyses were applied in order to identify any characteristics which distinguish specific sub-populations who are more likely to benefit from case management service, despite conflicting findings regarding its effectiveness for the aggregate population, as reported in the body of related research. However, in addition to a limited set of characteristics associated with benefit, the findings generated, a larger set of characteristics of patients likely to experience greater improvement without intervention. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following posterior fossa surgery for resection of childhood medulloblastoma and primitive neuroectodermal tumor (M/PNET), cerebellar mutism (CM) may develop. This is a condition of absent or diminished speech in a conscious patient with no evidence of oral apraxia, which can be accompanied by other symptoms of the posterior fossa syndrome complex, which includes ataxia and hypotonia. Little is known about the etiology. Therefore, we conducted a SNP, gene, and pathway-level analysis to assess the role of host genetic variation on the risk of CM in M/PNET subjects following treatment. Cases (n= 20) and controls (n= 53) were recruited from the Childhood Cancer Epidemiology and Prevention Center, in Houston, TX. DNA samples were genotyped using the Illumina Human 1M Quad SNP chip. Ten pathways were identified from logistic regression used to identify the marginal effect of each SNP on CM risk. The minP test was conducted to identify associations between SNPs categorized to genes and CM risk. Pathways were assessed to determine if there was a significant enrichment of genes in the pathway compared to all other pathways. There were 78 genes that reached the threshold of min P ≤0.05 in 948 genes. The Neurotoxicity pathway was the most significant pathway after adjusting for multiple comparisons (q=0.040 and q=0.005, using Fisher's exact test and a test of proportions, respectively). Most genes within the Neurotoxicity pathway that reached a threshold of minP ≤0.05 were known to have an apoptosis function, possibly inducing neuronal apoptosis in the dentatothalamocortical pathway, and may be important in CM etiology in this population. This is the first study to assess the potential role of genetic risk factors on CM. As an exploratory study, these results should be replicated in a larger sample. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusarium proliferatum has been reported on garlic in the Northwest USA, Spain and Serbia, causing water-soaked tan-colored lesions on cloves. In this work, Fusarium proliferatum was isolated from 300 symptomatic garlic bulbs. Morphological identification of Fusarium was confirmed using species-specific PCR assays and EF-1α sequencing. Confirmation of pathogenicity was conducted with eighteen isolates. Six randomly selected F. proliferatum isolates from garlic were tested for specific pathogenicity and screened for fusaric acid production. Additionally, pathogenicity of each F. proliferatum isolate was tested on healthy seedlings of onion (Allium cepa), leek (A. porrum), scallions (A. fistulosum), chives (A. schoenoprasum) and garlic (A. sativum). A disease severity index (DSI) was calculated as the mean severity on three plants of each species with four test replicates. Symptoms on onion and garlic plants were observed three weeks after inoculation. All isolates tested produced symptoms on all varieties inoculated. Inoculation of F. proliferatum isolates from diseased garlic onto other Allium species provided new information on host range and pathogenicity. The results demonstrated differences in susceptibility with respect to host species and cultivar. The F. proliferatum isolates tested all produced fusaric acid (FA); correlations between FA production and isolate pathogenicity are discussed. Additionally, all isolates showed the presence of the FUM1 gene suggesting the ability of Spanish isolates to produce fumonisins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Old-growth trees play a very important role in the maintenance of biodiversity in forests. However, no clear definition is yet available to help identify them since tree age is usually not recorded in National Forest Inventories. To develop and test a new method to identify old-growth trees using a species-specific threshold for tree diameter in National Forest Inventories. Different nonlinear mixed models for diameter ? age were generated using data from the Spanish Forest Inventory in order to identify the most appropriate one for Aleppo pine in its South-western distribution area. The asymptote of the optimal model indicates the threshold diameter for defining an old-growth tree. Additionally, five site index curves were examined to analyze the influence of site quality on these models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the detection and identification of hydrocarbons through flu oro-sensing by developing a simple and inexpensive detector for inland water, in contrast to current systems, designed to be used for marine waters at large distances and being extremely costly. To validate the proposed system, three test-benches have been mounted, with various UV-Iight sources. Main application of this system would be detect hydrocarbons pollution in rivers, lakes or dams, which in fact, is of growing interest by administrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitamin K-dependent carboxylase modifies and renders active vitamin K-dependent proteins involved in hemostasis, cell growth control, and calcium homeostasis. Using a novel mechanism, the carboxylase transduces the free energy of vitamin K hydroquinone (KH2) oxygenation to convert glutamate into a carbanion intermediate, which subsequently attacks CO2, generating the γ-carboxylated glutamate product. How the carboxylase effects this conversion is poorly understood because the active site has not been identified. Dowd and colleagues [Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. (1995) Science 269, 1684–1691] have proposed that a weak base (cysteine) produces a strong base (oxygenated KH2) capable of generating the carbanion. To define the active site and test this model, we identified the amino acids that participate in these reactions. N-ethyl maleimide inhibited epoxidation and carboxylation, and both activities were equally protected by KH2 preincubation. Amino acid analysis of 14C- N-ethyl maleimide-modified human carboxylase revealed 1.8–2.3 reactive residues and a specific activity of 7 × 108 cpm/hr per mg. Tryptic digestion and liquid chromatography electrospray mass spectrometry identified Cys-99 and Cys-450 as active site residues. Mutation to serine reduced both epoxidation and carboxylation, to 0.2% (Cys-99) or 1% (Cys-450), and increased the Kms for a glutamyl substrate 6- to 8-fold. Retention of some activity indicates a mechanism for enhancing cysteine/serine nucleophilicity, a property shared by many active site thiol enzymes. These studies, which represent a breakthrough in defining the carboxylase active site, suggest a revised model in which the glutamyl substrate indirectly coordinates at least one thiol, forming a catalytic complex that ionizes a thiol to initiate KH2 oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discrimination of true oligomeric protein–protein contacts from nonspecific crystal contacts remains problematic. Criteria that have been used previously base the assignment of oligomeric state on consideration of the area of the interface and/or the results of scoring functions based on statistical potentials. Both techniques have a high success rate but fail in more than 10% of cases. More importantly, the oligomeric states of several proteins are incorrectly assigned by both methods. Here we test the hypothesis that true oligomeric contacts should be identifiable on the basis of an increased degree of conservation of the residues involved in the interface. By quantifying the degree of conservation of the interface and comparing it with that of the remainder of the protein surface, we develop a new criterion that provides a highly effective complement to existing methods.