963 resultados para INVARIANT SUBSPACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a conserved current for the Maxwellian field, which is invariant under the gauge group of that field, is the sum of two currents Ф+T, where Ф corresponds to a Poincare symmetry of the field, and T is a topological form that is conserved under every dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 32F45.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 53C42, 53C15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 33C15, 33C05, 33C45, 65R10, 20C40

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 13F20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 54C35, 54D20, 54C60.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contributions of this dissertation are in the development of two new interrelated approaches to video data compression: (1) A level-refined motion estimation and subband compensation method for the effective motion estimation and motion compensation. (2) A shift-invariant sub-decimation decomposition method in order to overcome the deficiency of the decimation process in estimating motion due to its shift-invariant property of wavelet transform. ^ The enormous data generated by digital videos call for an intense need of efficient video compression techniques to conserve storage space and minimize bandwidth utilization. The main idea of video compression is to reduce the interpixel redundancies inside and between the video frames by applying motion estimation and motion compensation (MEMO) in combination with spatial transform coding. To locate the global minimum of the matching criterion function reasonably, hierarchical motion estimation by coarse to fine resolution refinements using discrete wavelet transform is applied due to its intrinsic multiresolution and scalability natures. ^ Due to the fact that most of the energies are concentrated in the low resolution subbands while decreased in the high resolution subbands, a new approach called level-refined motion estimation and subband compensation (LRSC) method is proposed. It realizes the possible intrablocks in the subbands for lower entropy coding while keeping the low computational loads of motion estimation as the level-refined method, thus to achieve both temporal compression quality and computational simplicity. ^ Since circular convolution is applied in wavelet transform to obtain the decomposed subframes without coefficient expansion, symmetric-extended wavelet transform is designed on the finite length frame signals for more accurate motion estimation without discontinuous boundary distortions. ^ Although wavelet transformed coefficients still contain spatial domain information, motion estimation in wavelet domain is not as straightforward as in spatial domain due to the shift variance property of the decimation process of the wavelet transform. A new approach called sub-decimation decomposition method is proposed, which maintains the motion consistency between the original frame and the decomposed subframes, improving as a consequence the wavelet domain video compressions by shift invariant motion estimation and compensation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion

and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.

As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spherical reduction of the rational Calogero model (of type A n−1 and after removing the center of mass) is considered as a maximally superintegrable quantum system, which describes a particle on the (n−2)-sphere subject to a very particular potential. We present a detailed analysis of the simplest non-separable case, n=4, whose potential is singular at the edges of a spherical tetrahexahedron. A complete set of independent conserved charges and of Hamiltonian intertwiners is constructed, and their algebra is elucidated. They arise from the ring of polynomials in Dunkl-deformed angular momenta, by classifying the subspaces invariant and antiinvariant under all Weyl reflections, respectively.