996 resultados para INTERFACE DEFECTS
Resumo:
Single crystals of the metalorganic nonlinear optical material zinc tris (thiourea) sulfate (ZTS) were grown from aqueous solution. The morphology of the crystals was indexed. The grown crystals were characterized by recording the powder X-ray diffraction pattern and by identifying the diffracting planes. Spectrophotometric studies on ZTS reveal that it has good transparency for the Nd: YAG laser fundamental wavelength. Differential thermal analysis of ZTS indicates that the material does not sublime before melting but decomposes immediately after melting. The defect content of the crystals was estimated using etching and X-ray topography. The mechanical hardness anisotropy was evaluated in the (100) plane, which indicates the presence of soft directions.
Resumo:
Passivation of point and extended defects in GaSb has been observed as a result of hydrogenated amorphous silicon (a-Si:H) treatment by the glow discharge technique. Cathodoluminescence (CL) images recorded at various depths in the samples clearly show passivation of defects on the surface as well as in the bulk region. The passivation of various recombination centers in the bulk is attributed to the formation of hydrogen-impurity complexes by diffusion of hydrogen ions from the plasma a-Si:H acts as a protective cap layer and prevents surface degradation which is usually encountered by bare exposure to hydrogen plasma. An enhancement in luminescence intensity up to 20 times is seen due to the passivation of nonradiative recombination centers. The passivation efficiency is found to improve with an increase in a-Si:H deposition temperature. The relative passivation efficiency of donors and acceptors by hydrogen in undoped and Te-compensated p-GaSb has been evaluated by CL and by the temperature dependence of photoluminescence intensities. Most notably, effective passivation of minority dopants in tellurium compensated p-GaSb is evidenced for the first time. (C) 1996 American Institute of Physics.
Resumo:
The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.
Resumo:
Using steady state and transient capacitance measurements, the electrical characteristics of a defect layer on the surface of bulk GaSb created during the hydrogen plasma treatment is presented. The trap density, activation energies, and the thickness of the defect layer have been calculated. The trap densities are comparable in magnitude to the carrier concentration. The defects introduce multiple energy levels in the band gap. Typical defect layer thicknesses range from a few angstroms to a fraction of a micron. © 1995 American Institute of Physics.
Resumo:
A general kind of Brownian vortices is demonstrated by applying an external nonconservative force field to a colloidal particle bound by a conservative optical trapping force at a liquid-air interface. As the liquid medium is translated at a constant velocity with the bead trapped at the interface, the drag force near the surface provides enough rotational component to bias the particle's thermal fluctuations in a circulatory motion. The interplay between the thermal fluctuations and the advection of the bead in constituting the vortex motions is studied, and we infer that the angular velocity of the circulatory motion offers a comparative measure of the interface fluctuations.
Resumo:
Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from the C-V characteristics. Layers grown from antimony rich melts always exhibit p-type conductivity. In contrast, a type conversion from p- to n- was observed in layers grown from gallium rich melts below 400 degrees C. The electron mobility of undoped n-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.
Resumo:
foam, either stacked together as three layers (MC) or inserted at three different positions (3L) while arranging the stacking sequence during the fabrication of glass fiber-epoxy composites, form the subject of investigation. This stacking variation resulted in a different interfacial area between these foam materials and the glass-epoxy regions in the laminates. This area in designed to be maximum for the 3L variety. The energy of impact being high enough to cause development of the crack in the samples, how the change in interfacial area affects the traverse of the crack front and the failure feature of the laminated composite are reported in the form of photomacrographs in this work. The results point to significant changes for the impact data, like for instance the peak load attained by the different samples, through thickness crack propagation and tensile fracture features on the non-impacted end for the plain variety, separation about the mid-zone for the MC laminates and two or more layer separations for the 3L variety. The separation for the foam-bearing systems occur invariably at the interface and here again one of the (two identical) interfaces only is chosen for the separation.
Resumo:
The effect on the macroscopic compressive failure features of introduction of two flexible foam layers, either together at mid-region or separately at two locations that are away from the midregion, into a glass-epoxy (G-E) system is studied in this work. In this experimental approach an attempt to look at the possible influence the foam/G-E interface region has on the way the materials respond to compressive loading is made by involving an analyses of macrofractographic features. While foam-free samples fail by extensive ear formation and separation nearer to the mid-region, the foam bearing ones display pronounced interface separation. The positioning of the foam sheet(s) has a bearing on the failure features.
Resumo:
The complex singularity associated with a crack at the interface between two dissimilar, isotropic and homogeneous materials leads to mathematical artefacts, such as stress oscillations and crack face interpenetrations in the vicinity of the crack tip. To avoid these unrealistic features, Sinclair (Sinclair GB. On the stress singularity at an interface crack. International Journal of Fracture 1980;16(2):111-9) assumed a finite crack opening angle (COA) such that the singularity lambda became real equal to 1/2. This paper extends the COA model by considering real singularities not necessarily equal to 1/2. When COA is 0 degrees: the interface crack singularity is complex with a real part equal to 1/2. On increasing COA, the imaginary part of the singularity decreases and becomes zero at a threshold value of COA; at this point, the singularity is a real, repeated value. A further increase in COA results in a pair of real singularities. Different crack opening configurations and material combinations are studied, and results presented for threshold COAs and associated values of singularity. Stress analyses for these three regimes: (a) complex, (b) real pair and (c) real repeated singularities, are reported. It is seen that additional complexities are present in the last case. Typical results for stress fields are also included for comparing with standard fields. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Radially homogeneous bulk alloys of GaxIn1-xSb in the range 0.7 < x < 0.8, have been grown by vertical Bridgman technique. The factors affecting the interface shape during the growth were optimised to achieve zero convexity. From a series of experiments, a critical ratio of the temperature gradient (G) of the furnace at the melting point of the melt composition to the ampoule lowering speed (v) was deduced for attaining the planarity of the melt-solid interface. The studies carried out on directional solidification of Ga0.77In0.23Sb mixed crystals employing planar melt-solid interface exhibited superior quality than those with nonplanar interfaces. The solutions to certain problems encountered during the synthesis and growth of the compound were discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its influence on stiffness and ductility of concrete have been investigated. The effect of composition of cement, surface characteristics of aggregate and type of loading have been studied. The load-deflection response is linear showing that the linear elastic fracture mechanics (LEFM) is applicable to characterize interface. The crack deformation increases with large rough aggregate surfaces. The strength of interface increases with the richness of concrete mix. The interface fracture energy increases as the roughness of the aggregate surface increases. The interface energy under mode II loading increases with the orientation of aggregate surface with the direction of loading. The chemical reaction between smooth aggregate surface and the cement paste seems to improve the interface energy. The ductility of concrete decreases as the surface area of the strong interface increases. The fracture toughness (stress intensity factor) of the interface seems to be very low, compared with hardened cement paste, mortar and concrete.
Resumo:
Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.
Resumo:
Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.
Resumo:
An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode 11 loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar, The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode IT) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode 11 loading effects has been brittle, indicating catastrophic failure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A mathematical model has been developed for the gas carburising (diffusion) process using finite volume method. The computer simulation has been carried out for an industrial gas carburising process. The model's predictions are in good agreement with industrial experimental data and with data collected from the literature. A study of various mass transfer and diffusion coefficients has been carried out in order to suggest which correlations should be used for the gas carburising process. The model has been interfaced in a Windows environment using a graphical user interface. In this way, the model is extremely user friendly. The sensitivity analysis of various parameters such as initial carbon concentration in the specimen, carbon potential of the atmosphere, temperature of the process, etc. has been carried out using the model.