394 resultados para INSECTA
Resumo:
Localities are documented for the milliped Abacion texense (Loomis, 1837) (Callipodida: Abacionidae) whose distribution forms both the northern and southern ordinal limits in the Western Hemisphere. The westernmost component of Abacion Rafinesque, 1820, A. texense is the only milliped species whose range spans the Mississippi and Pecos rivers and the Rio Grande. Distribution extremes are in Hennepin County (Co.), Minnesota, in the north; Terrell and Potter cos., Texas, in the west; Alcorn Co., Mississippi, in the east; and southwestern Tamaulipas, Mexico, in the south. Occurrences are projected for southeastern South Dakota, northwestern Alabama, and the southwestern periphery of Tennessee. The type series of A. texense consists solely of the male holotype, so a neotype will be needed if this individual is ever lost, because no paratypes were officially designated.
Resumo:
The National Collection of Arachnids, Instituto de Biología, Universidad Nacional Autónoma de México (México City) houses 476 chilopod samples, of which 197 are determined to genus and/or species. These are documented here and represent several new state records. Topotypes of eight species of centipedes described by R. V. Chamberlin also documented. Resumen. La Colección Nacional de Arácnidos, del Instituto de Biología de la Universidad Nacional Autónoma de México (Ciudad de México), resguarda 476 muestras de quilópodos, de los que 197 están determinadas a nivel de género y/o especie. Algunas de estas muestras corresponden a nuevos registros estatales. Se documentan los topotipos de ocho especies de ciempiés descritos por R. V. Chamberlin.
Resumo:
Twenty eight species of Temnocerus Thunberg, 1815 are recognized from Central America (Mexico to Panama) with eight previously described species and 20 new species as follows: T. abdominalis (Voss), T. chiapensis n. sp., T. chiriquensis (Sharp), T. confertus (Sharp), T. cyaneus n. sp., T. ellus n. sp., T. giganteus n. sp., T. guatemalenus (Sharp), T. guerrerensis n. sp., T. herediensis n. sp., T. mexicanus n. sp., T. michoacensis n. sp., T. minutus n. sp., T. niger n. sp., T. oaxacensis n. sp., T. obrieni, n. sp., T. oculatus (Sharp), T. potosi n. sp., T. pseudaeratus n. sp., T. pueblensis n. sp., T. pusillus (Sharp), T. regularis (Sharp), T. rostralis n. sp., T. rugosus n. sp., T. salvensis n. sp., T. tamaulipensis n. sp., T. thesaurus (Sharp) and T. yucatensis n. sp. Rhynchites debilis Sharp is placed in synonymy with Temnocerus guatemalenus (Sharp) and Pselaphorhynchites lindae Hamilton is placed in synonymy with Temnocerus regularis (Sharp). A key to species based on external characters and male genitalia is provided as well as digital images, aedeagus drawings, and map distributions.
Resumo:
The Neotropical genus Coprophanaeus Olsoufieff (1924), as classified here, comprises 38 species distributed among three subgenera (Megaphanaeus Olsoufieff, Metallophanaeus Olsoufieff, and Coprophanaeus s. str. ) and eight species groups. Keys presented help to identify supraspecific and species taxa, all of which are illustrated and diagnosed. Lectotypes are designated for Phanaeus ignecinctus Felsche and Phanaeus ohausi Felsche. Coprophanaeus corythus (Harold), formerly regarded as a subspecies of C. telamon (Erichson), assumes species status. Coprophanaeus magnoi Arnaud, described as a subspecies of C. milon (Blanchard), is raised to species status. New taxonomic interpretations result in 10 new subjective synonymies (junior synonym listed first): Phanaeus machadoi Pereira and d’Andretta = Coprophanaeus saphirinus (Perty); Phanaeus costatus Olsoufieff = Coprophanaeus cyanescens (Olsoufieff); Phanaeus worontzowi Pessôa and Lane = Coprophanaeus cyanescens (Olsoufieff); Coprophanaeus kohlmanni Arnaud = Coprophanaeus morenoi Arnaud; Coprophanaeus pluto nogueirai Arnaud = Coprophanaeus pluto (Harold); Coprophanaeus edmondsi Arnaud = Coprophanaeus conocephalus (Olsoufieff); Coprophanaeus uhleri Malý and Pokorný = Coprophanaeus chiriquensis (Olsoufieff); Coprophanaeus henryi Malý and Pokorný = Coprophanaeus gilli Arnaud; Phanaeus perseus Harold = Coprophanaeus corythus (Harold); Coprophanaeus telamon nevinsoni Arnaud and Gámez = Coprophanaeus corythus; and Coprophanaeus florenti Arnaud = Coprophanaeus ohausi (Felsche). The status of the following names remains unresolved: Phanaeus strandi Balthasar; Coprophanaeus rigoutorum Arnaud; C. terrali Arnaud; C. lichyi Arnaud; C. lecromi Arnaud; C. larseni Arnaud; and C. vazdemeloi Arnaud.
Resumo:
A comprehensive revision of the Subfamily Parandrinae (Coleoptera, Cerambycidae) from the Hawaiian, Australasian, Oriental, and Japanese regions is presented. Seven (7) new genera are described: Komiyandra, Melanesiandra, Papuandra, Storeyandra, Hawaiiandra, Caledonandra, and Malukandra. All known, indigenous species from these regions are assigned to new genera resulting in the following new combinations: Komiyandra janus (Bates, 1875), K. shibatai (Hayashi, 1963), K. formosana (Miwa and Mitono, 1939), K. lanyuana (Hayashi, 1981), Melanesiandra striatifrons (Fairmaire, 1879), M. solomonensis (Arigony, 1983), Caledonandra austrocaledonica (Montrouzier, 1861), C. passandroides (Thomson, 1867), Hawaiiandra puncticeps (Sharp, 1878), Malukandra heterostyla (Lameere, 1902), Storeyandra frenchi (Blackburn, 1895), and Papuandra araucariae (Gressitt, 1959). Thirty-one (31) new species are described: Komiyandra javana, K. nayani, K. ohbayashii, K. luzonica, K. philippinensis, K. mindanao, K. mehli, K. vivesi, K. lombokia, K. sulawesiana, K. irianjayana, K. menieri, K. sangihe, K. mindoro, K. niisatoi, K. drumonti, K. cabigasi, K. koni, K. johkii, K. poggii, K. uenoi, Melanesiandra bougainvillensis, M. birai, Papuandra gressitti, P. weigeli, P. queenslandensis, P. norfolkensis, P. rothschildi, P. oberthueri, Malukandra jayawijayana and M. hornabrooki. A lectotype is designated for Parandra janus Bates, 1875. Komiyandra janus (Bates, 1875) is excluded from nearly all previously reported locations, even one location given in the original description, and is now only known from Sulawesi. A paralectotype of Parandra janus Bates, 1875, is designated as a paratype for Komiyandra menieri, new species. Komiyandra formosana is excluded from the Japanese (Ryukyu Is.) fauna. Parandra vitiensis Nonfried, 1894, is again placed in synonymy with P. striatifrons Fairmaire (now Melanesiandra striatifrons). A neotype is designated for Parandra austrocaledonica Montrouzier, 1861. A lectotype is designated for Parandra janus Bates, 1875. The lectotype of Parandra gabonica Thomson, 1858, designated by Quentin and Villiers (1975) is considered invalid. Papuandra araucariae (Gressitt, 1959) is excluded from the fauna of Norfolk Island. The African species Stenandra kolbei (Lameere, 1903) is reported for the first time from Asia (N. Vietnam). Keys are presented to separate worldwide genera of Parandrini and all species within the study regions. Illustrations are provided for all species including many special characters to differentiate genera and species.
Resumo:
An updated checklist of the Cerambycidae of Costa Rica is presented. This new version includes 1,071 species and subspecies in 429 genera, 69 tribes, and six subfamilies. Of these, 181 are new country records and 136 species are known only from Costa Rica. In addition, provincial distribution data are provided for each species. The checklist supports a wealth of scientific literature in many other groups of flora and fauna indicating Costa Rica has high species richness of cerambycid beetles. Se presenta una lista actualizada de los Cerambycidae de Costa Rica. Esta nueva versión incluye 1.071 especies y subespecies en 429 géneros, 69 tribus, y seis subfamilias. De estas, 181 son nuevos registros para el país y 136 especies se conocen solamente de Costa Rica. Adicionalmente, para cada especie se incluyen datos sobre su presencia en las diferentes provincias. La lista concuerda con una gran cantidad de literatura científica en muchos otros grupos de flora y fauna que muestran que Costa Rica tiene una alta riqueza de especies.
Resumo:
Mature larva and pupa of Macrolygistopterus subparallelus Pic are described and compared to known Calochromini immatures. Larvae were collected alive inside dead trunk in the Atlantic Forest at Estacao Biologica de Boraceia, Salesopolis, Sao Paulo, Brazil. They were maintained in laboratory conditions, and the pupal period was 12 days (one observation). The pupa of this genus is described for the first time. This larva differs from known Calochromini larvae mainly because of its almost cylindrical campodeiform body and longer urogomphi.
Resumo:
A full checklist of the species of Telebasis Selys, 1865, housed in the Brazilian collections Colecao Entomologica Prof. Jose Alfredo Pinheiro Dutra, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio do Janeiro (DZRJ), and Museu de Zoologia, Universidade de Sao Paulo (MZSP) is presented. A total of 325 specimens representing 19 species were studied. Ten new records for Brazilian States were found for T. carmesina Calvert, 1909 (Rio de Janeiro and Rio Grande do Sul), T. corallina (Selys, 1876) (Pernambuco), T. demarara (Williamson, 1917) (Maranhao), T. filiola (Perty, 1834) (Paraiba and Santa Catarina), T. gigantea Daigle, 2002 (Sao Paulo), T. inalata (Calvert, 1961) (Mato Grosso do Sul), T. pallida Machado, 2010 (Goias) and T. obsoleta (Selys, 1876) (Mato Grosso do Sul), as well as a new record of T. carminita Calvert, 1909 for Suriname. Telebasis pallida Machado, 2010 is redescribed and diagnosed based on 14 males collected near the type locality, and its genital ligula is described and illustrated for the first time. Furthermore, the status of the three species of the Telebasis racenisi Bick & Bick, 1995 complex is evaluated. Of these, Telebasis pareci Machado, 2010 syn. n. is proposed as junior subjective synonym of Telebasis lenkoi Machado, 2010, and a possible synonymy among the three species is discussed under T. racenisi. ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Hymenoptera exhibit an incredible diversity of phenotypes, the result of similar to 240 million years of evolution and the primary subject of more than 250 years of research. Here we describe the history, development, and utility of the Hymenoptera Anatomy Ontology (HAO) and its associated applications. These resources are designed to facilitate accessible and extensible research on hymenopteran phenotypes. Outreach with the hymenopterist community is of utmost importance to the HAO project, and this paper is a direct response to questions that arose from project workshops. In a concerted attempt to surmount barriers of understanding, especially regarding the format, utility, and development of the HAO, we discuss the roles of homology, "preferred terms", and "structural equivalency". We also outline the use of Universal Resource Identifiers (URIs) and posit that they are a key element necessary for increasing the objectivity and repeatability of science that references hymenopteran anatomy. Pragmatically, we detail a mechanism (the "URI table") by which authors can use URIs to link their published text to the HAO, and we describe an associated tool (the "Analyzer") to derive these tables. These tools, and others, are available through the HAO Portal website (http://portal.hymao.org). We conclude by discussing the future of the HAO with respect to digital publication, cross-taxon ontology alignment, the advent of semantic phenotypes, and community-based curation.
Resumo:
A new chewing louse genus and species belonging to the Philopteridae, namely, Palmaellus inespectatus n. gen., n. sp., is described. The new genus is distinguished from the other ischnoceran genera hitherto described by its peculiar characters of the dorsal anterior head plate with 2 postero-lateral projections, pterothorax and abdomen with scarce chaetotaxy, male genitalia with simple mesomere and paramere lacking inner digitiform projection, and the genital region of female with postero-vulvar plates bearing setae. It is a parasite of the trumpeters, an avian family endemic to South America's Amazon Basin.
Resumo:
The Neotropical genus Anacroneuria (Perlidae) is represented by more than 300 species. Among the Brazilian Anacroneuria, only the nymphs of two species have been described. In this paper, we described the nymph of A. ofaye Froehlich and an apparatus for rearing this genus. This is the first record of A. ofaye from Parana State, Brazil.
Resumo:
Abstract Background The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. Results Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. Conclusions The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.
Resumo:
[EN] Meiofaunal assemblages from intertidal and shallow subtidal seabeds were studied at two sites (one dominated by volcanic sands and the other by organogenic sands) at Tenerife (Canary Islands, NE Atlantic Ocean) throughout an entire year (May 2000?April 2001). Specifically, we aimed (i) to test for differences in diversity, structure, and stability between intertidal and subtidal meiofaunal assemblages, and (ii) to determine if differences in the meiofaunal assemblage structure may be explained by environmental factors (granulometric composition, availability of organic matter, and carbonate content in sediments). A total of 103,763 meiofaunal individuals were collected, including 203 species from 19 taxonomic groups (Acari, Amphipoda, Cnidaria, Copepoda, Echinodermata, Gastrotricha, Isopoda, Insecta, Kinorrhyncha, Misidacea, Nematoda, Nemertini, Oligochaeta, Ostracoda, Polychaeta, Priapulida, Sipuncula, Tanaidacea, and Turbellaria). Nematodes were the most abundant taxonomic group. Species diversity was higher in the subtidal than in the intertidal zone at both sites, as a result of the larger dominance of a few species in the intertidal zone. The meiofaunal assemblage structure was different between tidal levels at both sites, the intertidal presenting greater temporal variability (multivariate dispersion) in the meiofaunal assemblage structure than the subtidal. Sediment grain size, here quantified by the different granulometric fractions, explained the variability in meiofaunal assemblage structure to a greater extent than the percentage of carbonates, a variable linked to sediment origin. This study revealed differences in diversity, assemblage structure, and variability between intertidal and subtidal meiofauna.
Resumo:
Als Ergebnis der Revision der Gattung Lygus Hahn (Heteroptera, Miridae, Insecta) wurden die fünf neuen Arten beschrieben: L. sibiricus Aglyamzyanov, 1990, L. orientis Aglyamzyanov, 1994, L. izyaslavi Aglyamzyanov, 1994, L. monticola Aglyamzyanov, 1994 und L. martensi Aglyamzyanov, 2003. Die vier Speziessnamen wurden synonymisiert: L. dracunculi Josifov, 1992, L. alashanensis Qi, 1993, L. renati Schwartz, 1998 (L. elegans Aglyamzyanov, 1994) = L. poluensis (Wagner, 1967) und L. kerzhneri Qi, 1993 = L. punctatus (Zetterstedt, 1838). Artstatus von L. israelensis Linnavuori, 1962 wurde wiederhergestellt. Nach aktuellen Angaben wurden in der Paläarktis 19 Lygus-Arten festgestellt: L. discrepans Reuter, 1906; L. gemellatus (Herrich-Schaeffer, 1835); L. hsiaoi Zheng & Yu, 1992; L. israelensis Linnavuori, 1962; L. italicus Wagner, 1950; L. izyaslavi Aglyamzyanov, 1994; L. maritimus Wagner, 1949; L. martensi Aglyamzyanov, 2003; L. monticola Aglyamzyanov, 1994; L. orientis Aglyamzyanov, 1994; L. pachycnemis Reuter, 1879; L. paradiscrepans Zheng & Yu, 1992; L. poluensis (Wagner, 1967); L. pratensis (Linnaeus, 1758); L. punctatus (Zetterstedt, 1838); L. rugulipennis Poppius, 1911; L. sibiricus Aglyamzyanov, 1990; L. tibetanus Zheng & Yu, 1992 und L. wagneri Remane, 1955. Es wurden die diagnostischen Merkmale analysiert, eine Bestimmungstabelle erstellt und die Areale der Verbreitung der einigen Arten präzisiert.
Resumo:
The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn