968 resultados para INDUCED CARDIAC PROTECTION
Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs
Resumo:
Schistosoma mansoni soluble egg antigens (SEA) were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8) presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2), which were transferred to nitrocellulose membrane (PVDF) and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp). Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH)3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.
Resumo:
BACKGROUND: The proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18 are central players in the pathogenesis of inflammatory bowel disease (IBD). In response to a variety of microbial components and crystalline substances, both cytokines are processed via the caspase-1-activating multiprotein complex, the NLRP3 inflammasome. Here, the role of the NLRP3 inflammasome in experimental colitis induced by dextran sodium sulfate (DSS) was examined. METHODS: IL-1beta production in response to DSS was studied in macrophages of wild-type, caspase-1(-/-), NLRP3(-/-), ASC(-/-), cathepsin B(-/-) or cathepsin L(-/-) mice. Colitis was induced in C57BL/6 and NLRP3(-/-) mice by oral DSS administration. A clinical disease activity score was evaluated daily. Histological colitis severity and expression of cytokines were determined in colonic tissue. RESULTS: Macrophages incubated with DSS in vitro secreted high levels of IL-1beta in a caspase-1-dependent manner. IL-1beta secretion was abrogated in macrophages lacking NLRP3, ASC or caspase-1, indicating that DSS activates caspase-1 via the NLRP3 inflammasome. Moreover, IL-1beta secretion was dependent on phagocytosis, lysosomal maturation, cathepsin B and L, and reactive oxygen species (ROS). After oral administration of DSS, NLRP3(-/-) mice developed a less severe colitis than wild-type mice and produced lower levels of proinflammatory cytokines in colonic tissue. Pharmacological inhibition of caspase-1 with pralnacasan achieved a level of mucosal protection comparable with NLRP3 deficiency. CONCLUSIONS: The NLRP3 inflammasome was identified as a critical mechanism of intestinal inflammation in the DSS colitis model. The NLRP3 inflammasome may serve as a potential target for the development of novel therapeutics for patients with IBD.
Resumo:
While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF.
Resumo:
It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.
Resumo:
Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to disclose signaling pathways related to these stages, cultured thymus lobes had their RNA extracted, for the search of transcripts differentially expressed using RNAse protection assays and reverse transcriptase-polymerase chain reactions. We found no difference that could explain INS-driven thymocyte growth, in the pattern of transcripts for death/proliferation mediators, or for a series of growth factor receptors and transcriptional regulators known as essential for thymus development. Thymocyte suspensions from cultured lobes, stained for phenotype analysis by fluorescence activated cell sorting, showed a decreased staining for Notch1 protein at cell surfaces upon INS addition. We analyzed the expression of Notch-related elements, and observed the recruitment of a specific set of transcripts simultaneous and compatible with INS-driven thymocyte growth, namely, transcripts for Notch3, for its ligand Jagged2, and for Deltex1, a mediator of a poorly characterized alternative pathway downstream of the Notch receptor.
Resumo:
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Resumo:
Human immunodeficiency virus (HIV-1) has become an important risk factor for human papillomavirus (HPV) infection and the development of HPV associated lesions in the female genital tract. HIV-1 may also increase the oncogenicity of high risk HPV types and the activation of low risk types. The Center for Disease Control and Prevention declared invasive cervical cancer an acquired immunodeficience virus (AIDS) defining illness in HIV positive women. Furthermore, cervical cancer happens to be the second most common female cancer worldwide. The host's local immune response plays a critical factor in controlling these conditions, as well as in changes in the number of professional antigen-presenting cells, cytokine, and MHC molecules expression. Also, the production of cytokines may determine which arm of the immune response will be stimulated and may influence the magnitude of immune protection. Although there are many studies describing the inflammatory response in HPV infection, few data are available to demonstrate the influence of the HIV infection and several questions regarding the cervical immune response are still unknown. In this review we present a brief account of the current understanding of HIV/HPV co-infection, emphasizing cervical immune response.
Resumo:
Malaria is one of the most important tropical and infectious diseases causing many deaths and enormous social and economic consequences, particularly in the developing countries. Despite of widely use of anti-malaria drugs and insecticide, the development of successful vaccines constitutes one of the main strategies to control malaria transmission. Several proteins expressed from blood stage such as merozoite surface proteins (MSP] or liver stage as circumsporozoite protein (CSP) are shown to be the targets of immune responses in humans and in animals. Thus, several studies have illustrated that natural infection and laboratory immunizations of humans and animals with Plasmodium sporozoite (SPZ) and its derivate-proteins (peptides) can elicit protection and control of parasite infection. However, a clear understanding of immune response against defined Plasmodium proteins should be the prerequisite conditions before any development of appropriate vaccines. In this order, our study focused on the immune responses to MSP2 (dimorphic and C-terminal fragments) in human and mice; and the mechanisms by which mouse infected hepatocytes present Plasmodium antigens to CD8+ T-cells to induce protective immunity in mice.¦The first part of this work shows that infected hepatocytes can present Plasmodium antigens to PbCSP-specific CD8+ T-cells and induce a protective immunity in mice. Here, this was addressed in vivo and showed that the infected hepatocytes were able of stimulating of primed-and naive-CD8+ T-cell clones and induced fully protective immunity against SPZ challenge. The role of infected hepatocytes in antigen presentation was illustrated here by their graft into immuno-deficient mice and depletion of cosspresenting dentritic cells (DCs) that are known to have key role in the activation of CD8+ T-cells during the liver cycle stage of Plasmodium.¦The second part of this project concerned the fine specificity of Ab responses regarding D and C regions of the two allelic families of MSP2 (3D7 and FC27). Covering of the two regions by overlapping-20 mers led to delineate the epitopes in the different endemic areas and different age groups of donors. The major epitopes characterizing D or C regions were conserved in different endemic areas (P12/P13 and P15/P16 for the 3D7-D, P23/24 and P25/26 for the FC27-D; P29/P30 for the C region). This offers thus, the possibility of a multi-epitope vaccine design including the major epitopes from the two domains of the two allelic MSP2 families. On the other, the 20 mers, particularly some major epitopes of the 3D7-Dregion (P12, P13 and P16) belonged to the epitopes that presented a high probability to be associated with protection in the children group [1 to 5 year-old). In addition, D and C LSP purified Abs (pAbs) recognized merozoite derived polypeptides and native proteins. A crossreactivity activity of homologous pAbs against the heterologous was also illustrated between the two allelic MSP2 parasites. Finally, the functional analysis of D regions pAbs showed an inhibition of Plasmodium falciparum growth suggesting the functional biological activity of the D region pAbs in the control of malaria.¦The last part of this project aimed the evaluation of the immunogenicity of the D and C region LSPs of the two allelic MSP2 families in the presence of adjuvants for the possible use in clinical trial study in humans. The MSP2 LSP mixture showed that D and C were immunogenic and defined limited epitopes (whose intensity of immune responses) depending on the adjuvants and mouse strain for the D regions. The major epitopes characterizing the C region were usually conserved in different strains of mouse and adjuvants used. Furthermore, the single region (either with D or C) immunization of mice confirmed the immunogenicity and the presence of their limited epitopes. We concluded that the possibility to finely delineate in animals the immune responses to antigens might help to select optimal antigen/adjuvant combinations to be tested later in clinical trials. Thus, formulation of glucopyranosyl-lipid A stable emulsion, GLA-SE (toll like receptor (TLR) 4 agonist) and its different combination (CpG: TLR9 agonist and GDQ: LR7 agonist) with MSP2 LSP was better than with alum, montanide ISA 720 (Mt) and virosome. Immunization of mice with allelic LSP did not show a crossreactivity between the two allelic MSP2 parasites unlike as humans, suggesting that the crossreactivity could be acquired during natural infection of the population who are usually exposed to both allelic parasite forms (3D7 and FC27).¦Nevertheless, similar epitope of D (P12, P13 and P25) and C (P29) regions have been found both in mice and human. This offers an opportunity to compare their epitopes in naïve immunized donors with LSPs and naturally infected populations in the endemic areas.
Resumo:
OBJECTIVE: Therapeutic temperature modulation is recommended after cardiac arrest (CA). However, body temperature (BT) regulation has not been extensively studied in this setting. We investigated BT variation in CA patients treated with therapeutic hypothermia (TH) and analyzed its impact on outcome. METHODS: A prospective cohort of comatose CA patients treated with TH (32-34°C, 24h) at the medical/surgical intensive care unit of the Lausanne University Hospital was studied. Spontaneous BT was recorded on hospital admission. The following variables were measured during and after TH: time to target temperature (TTT=time from hospital admission to induced BT target <34°C), cooling rate (spontaneous BT-induced BT target/TTT) and time of passive rewarming to normothermia. Associations of spontaneous and induced BT with in-hospital mortality were examined. RESULTS: A total of 177 patients (median age 61 years; median time to ROSC 25 min) were studied. Non-survivors (N=90, 51%) had lower spontaneous admission BT than survivors (median 34.5 [interquartile range 33.7-35.9]°C vs. 35.1 [34.4-35.8]°C, p=0.04). Accordingly, time to target temperature was shorter among non-survivors (200 [25-363]min vs. 270 [158-375]min, p=0.03); however, when adjusting for admission BT, cooling rates were comparable between the two outcome groups (0.4 [0.2-0.5]°C/h vs. 0.3 [0.2-0.4]°C/h, p=0.65). Longer duration of passive rewarming (600 [464-744]min vs. 479 [360-600]min, p<0.001) was associated with mortality. CONCLUSIONS: Lower spontaneous admission BT and longer time of passive rewarming were associated with in-hospital mortality after CA and TH. Impaired thermoregulation may be an important physiologic determinant of post-resuscitation disease and CA prognosis. When assessing the benefit of early cooling on outcome, future trials should adjust for patient admission temperature and use the cooling rate rather than the time to target temperature.
Resumo:
The activation of the transcription factor NF-kappaB often results in protection against apoptosis. In particular, pro-apoptotic tumor necrosis factor (TNF) signals are blocked by proteins that are induced by NF-kappaB such as TNFR-associated factor 1 (TRAF1). Here we show that TRAF1 is cleaved after Asp-163 when cells are induced to undergo apoptosis by Fas ligand (FasL). The C-terminal cleavage product blocks the induction of NF-kappaB by TNF and therefore functions as a dominant negative (DN) form of TRAF1. Our results suggest that the generation of DN-TRAF1 is part of a pro-apoptotic amplification system to assure rapid cell death.
Resumo:
The need to develop a vaccine against schistosomiasis led several researches and our group to investigate proteins from Schistosoma mansoni as vaccine candidates. Sm22.6 is a protein from S. mansoni that shows high identity with Sj22.6 and Sh22.6 (79 and 91%, respectively). These proteins are associated with high levels of IgE and protection to reinfection. Previously, we have shown that Sm22.6 induced a partial protection of 34.5% when used together with Freund's adjuvant and produced a Th0 type of immune response with interferon-g and interleukin-4. In this work, mice were immunized with Sm22.6 alone or with aluminum hydroxide adjuvant and high levels of IgG, IgG1, and IgG2a were measured. Unfortunately, no protection was detected. Since IL-10 is a modulating cytokine in schistosomiasis, we also observed a high level of this molecule in splenocytes of vaccinated mice. In conclusion, we did not observe the adjuvant effect of aluminum hydroxide associated with rSm22.6 in protective immunity.
Resumo:
ABSTRACT¦Naturally acquired tumor-specific T-cells can be detected in most advanced cancer patients.¦Yet, they often fail to control or eliminate the disease, in contrast to many virus-specific CD8¦T lymphocytes. Therapeutic vaccines aim at inducing and boosting specific T-cells mediated¦immunity to reduce tumor burden. The properties of CD8 T-cells required for protection from¦infectious disease and cancer are only partially characterized.¦The objectives of this study were to assess effector functions, stage of differentiation and¦clonotype selection of tumor-reactive T lymphocytes following peptide vaccination in¦melanoma patients over time. Results were compared to protective viral-specific T-cell¦responses found in healthy individuals. We also characterized dominant versus low/non¦dominant T-cell clonotypes with the aim to further understand the in vivo function of each set¦of frequency-based specific T-cells.¦Here we developed and applied a novel approach for molecular and functional analysis of¦single T lymphocytes ex vivo. T-cell receptor (TCR) clonotype mapping revealed rapid¦selection and expansion of co-dominant T-cell clonotypes, which made up the majority of the¦highly differentiated "effector" T-cells, but only 25% of the less differentiated "effectormemory"¦cells, mostly composed of non-dominant clonotypes. Moreover, we show that¦advanced effector cell differentiation was indeed clonotype-dependent. Surprisingly, however,¦the acquisition of effector functions (cytokine production, killing) was clonotype-independent.¦Vaccination of melanoma patients with native peptide induced competent effector function in¦both dominant and non-dominant clonotypes, suggesting that most if not all clonotypes¦participating in a T-cell response have the potential to develop equal functional competence.¦In contrast, many T-cells remained poorly functional after vaccination with analog peptide,¦despite similar clonotype-dependent differentiation. Our findings show that the type of¦peptide vaccine has a critical influence on the selection and functional activation of the¦clonotypic T-cell repertoire. They also show that systematic assessment of individual T-cells¦identifies the cellular basis of immune responses, contributing to the rational development of¦vaccines.
Resumo:
The immune response is crucial for protection against disease; however, immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. Several studies have evaluated the cellular and humoral immune responses in chagasic patients in an attempt to correlate immunological findings with clinical forms of Chagas disease. Moreover, immunoglobulins and cytokines are important for parasitic control and are involved in lesion genesis. Here, cytokine and IgG isotype production were studied, using total epimastigote antigen on sera of chagasic patients with indeterminate (IND, n = 27) and cardiac (CARD, n = 16) forms of the disease. Samples from normal, uninfected individuals (NI, n = 30) were use as controls. The results showed that sera from both IND and CARD patients contained higher levels of Trypanosoma cruzi-specific IgG1 (IgG1) antibodies than sera from NI. No difference in IgG2 production levels was observed between NI, IND and CARD patients, nor was a difference in IL-10 and IFN-³ production detected in the sera of IND, CARD and NI patients. However, IND patients displayed a positive correlation between IL-10 and IFN-³ levels in serum, while CARD patients showed no such correlation, indicating an uncontrolled inflammatory response in CARD patients. These findings support the hypothesis that a lack of efficient regulation between IFN-³ and IL-10 productions in CARD patients may lead to cardiac immunopathology.
Resumo:
The potential use of the Trypanosoma cruzi metacyclic trypomastigote (MT) stage-specific molecule glycoprotein-82 (gp82) as a vaccine target has not been fully explored. We show that the opsonization of T. cruzi MT with gp82-specific antibody prior to mucosal challenge significantly reduces parasite infectivity. In addition, we investigated the immune responses as well as the systemic and mucosal protective immunity induced by intranasal CpG-adjuvanted gp82 vaccination. Spleen cells from mice immunized with CpG-gp82 proliferated and secreted IFN-γ in a dose-dependent manner in response to in vitro stimulation with gp82 and parasite lysate. More importantly, these CpG-gp82-immunized mice were significantly protected from a biologically relevant oral parasite challenge.