983 resultados para INDUCED CARDIAC FIBROSIS
Resumo:
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Resumo:
Rationale Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. Objective To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. Methods and results Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 mu g/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-kappa B and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. Conclusion Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified. J Hypertens 29: 1400-1410 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Noninvasive assessment of cardiac structure and function is essential to understand the natural course of murine infection with Trypanosoma cruzi. Magnetic resonance imaging (MRI) and echocardiography have been used to monitor anatomy and function; positron emission tomography (PET) is ideal for monitoring metabolic events in the myocardium. Mice infected with T. cruzi (Brazil strain) were imaged 15-100 days post infection (dpi). Quantitative (18)F-FDG microPET imaging, MRI and echocardiography were performed and compared. Tracer ((18)F-FDG) uptake was significantly higher in infected mice at all days of infection, from 15 to 100 dpi. Dilatation of the right ventricular chamber was observed by MRI from 30 to 100 dpi in infected mice. Echocardiography revealed significantly reduced ejection fraction by 60 dpi. Combination of these three complementary imaging modalities makes it possible to noninvasively quantify cardiovascular function, morphology, and metabolism from the earliest days of infection through the chronic phase.
Resumo:
Prostacyclin (PgI(2)) and endothelium-derived nitric oxide (EDNO) are produced by the arterial and venous endothelium. In addition to their vasodilator action on vascular smooth muscle, both act together to inhibit platelet aggregation and promote platelet disaggregation. EDNO also inhibits platelet adhesion to the endothelium. EDNO and PgI(2) have been shown to be released from the cultured endocardial cells. In this study, we examined the release of vasoactive substances from the intact endocardium by using isolated rabbit hearts perfused with physiological salt solution (95% O(2)/5% CO(2), T = 37 degrees C). The right and left cardiac chambers were perfused through separate constant-flow perfusion loops (physiological salt solution, 8 ml min(-1)). Effluent from left and right cardiac, separately, was bioassayed on canine coronary artery smooth muscle, which had been contracted with prostaglandin F(2 alpha_)(2 x 10(-6) M) and no change in tension was exhibit. However, addition of calcium ionophore A23187 (10(-6) M) to the cardiac chambers` perfusion line induced vasodilation of the bioassay coronary ring, 61.4 +/- 7.4% versus 70.49 +/- 6.1% of initial prostaglandin F(2 alpha) contraction for the left and right cardiac chambers perfusate, respectively (mean +/- SEM, n = 10, p > 0.05). Production of vasodilator was blocked totally in the left heart but, only partially blocked in the right heart by adding indomethacin (10(-5) M) to the perfusate, respectively, 95.2 +/- 2.2% versus 41.5 +/- 4.8% (mean +/- SEM, n = 10, p < 0.05). 6-Keto prostaglandin F(1 alpha), measured in the endocardial superfusion effluent was also higher for the left cardiac chambers than for the right at the time of stimulation with the A23187, respectively, 25385.88 +/- 5495 pg/ml (n = 8) versus 13,132.45 +/- 1839.82 pg/ml (n = 8), (p < 0.05). These results showed that cyclooxygenase pathway plays major role in generating vasoactive substances for the left cardiac chamber endocardium; while it is not the main pathway for the right ventricular endocardium at which EDNO and PgI(2) Could act together and potentiate their antithrombogenic activities in isolated perfused rabbit heart. This may be an explanation for the intraventricular thrombus mostly seen in left ventricle rather than in right ventricle as a complication of myocardial infarction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n =70) were divided into five groups: Sedentary Sham (SS): Trained Sham (TS); Trained Hypertensive Sham treated with N(C)-nitro-L-arginine methyl ester (L-NAME) (THS): Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. FIRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS. THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES To evaluate the histological alterations of extracellular matrix in long-term alloxan-induced diabetes and aging urethras of male rats with descriptions of total connective tissue, muscle layer and collagen types I and III relative amounts. METHODS Histologic evaluations were performed in 3 animal groups: group 1, 8 weeks old; group 2, 44 weeks old; and group 3, 44 weeks old with alloxan-induced diabetes. The muscle layer thickness, extracellular matrix fibrosis, and collagen were quantified on digital images of the urethral samples. RESULTS A higher total thickness and muscle layer thickness and higher connective tissue and collagen content were observed in the urethras of group 3. No changes in the collagen type III/I ratio were found in the urethra of groups 2 and 3. CONCLUSIONS Our results suggest that the morphologic alterations of the urethra should also be considered in long-term studies of diabetic lower urinary tract dysfunction. These morphologic alterations due to diabetes differ from the changes induced by aging itself and could represent a final stage in decompensate urethras. Further studies are necessary to establish the real influence of the urethral morphologic changes on lower urinary tract diabetes dysfunction. UROLOGY 77: 510.e6-510.e11, 2011. (C) 2011 Elsevier Inc.
Resumo:
Positive end-expiratory pressure (PEEP) and sustained inspiratory insufflations (SI) during acute lung injury (ALI) are suggested to improve oxygenation and respiratory mechanics. We aimed to investigate the hemodynamic effects of PEEP with and without alveolar recruiting maneuver in a mild ALI model induced by inhalation of hydrochloric acid. Thirty-two pigs were randomly allocated into four groups (Control-PEEP, Control-SI, ALI-PEEP and ALI-SI). ALI was induced by intratracheal instillation of hydrochloric acid. PEEP values were progressively increased and decreased from 5, 10, 15 and 20 cmH(2)O in all groups. Three SIs maneuvers of 30 cmH(2)O for 20 s were applied to the assignable groups between each PEEP level. Transesophageal echocardiography (TEE), global hemodynamics, oxygenation indexes and gastric tonometry were measured 5 min after the maneuvers had been concluded and at each established value of PEEP (5, 10, 15 and 20 cmH(2)O). The cardiac index, ejection fraction and end-diastolic volume of right ventricle were significantly (P < 0.001) decreased with PEEP in both Control and ALI groups. Left ventricle echocardiography showed a significant decrease in end-diastolic volume at 20 cmH(2)O of PEEP (P < 0.001). SIs did not exert any significant hemodynamic effects either early (after 5 min) or late (after 3 h). In a mild ALI model induced by inhalation of hydrochloric acid, significant hemodynamic impairment characterized by cardiac function deterioration occurred during PEEP increment, but SI, probably due to low applied values (30 cmH(2)O), did not exert further negative hemodynamic effects. PEEP should be used cautiously in ALI caused by acid gastric content inhalation.
Resumo:
Trypanosoma cruzi infection causes intense myocarditis, leading to cardiomyopathy and severe cardiac dysfunction. Protective adaptive immunity depends on balanced signaling through a T cell receptor and coreceptors expressed on the T cell surface. Such coreceptors can trigger stimulatory or inhibitory signals after binding to their ligands in antigen-presenting cells (APC). T. cruzi modulates the expression of coreceptors in lymphocytes after infection. Deregulated inflammation may be due to unbalanced expression of these molecules. Programmed death cell receptor 1 (PD-1) is a negative T cell coreceptor that has been associated with T cell anergy or exhaustion and persistent intracellular infections. We aimed to study the role of PD-1 during T. cruzi-induced acute myocarditis in mice. Cytometry assays showed that PD-1 and its ligands are strongly upregulated in lymphocytes and APC in response to T. cruzi infection in vivo and in vitro. Lymphocytes infiltrating the myocardium exhibited high levels of expression of these molecules. An increased cardiac inflammatory response was found in mice treated with blocking antibodies against PD-1, PD-L1, and to a lesser extent, PD-L2, compared to that found in mice treated with rat IgG. Similar results in PD-1(-/-) mice were obtained. Moreover, the PD-1 blockade/deficiency led to reduced parasitemia and tissue parasitism but increased mortality. These results suggest the participation of a PD-1 signaling pathway in the control of acute myocarditis induced by T. cruzi and provide additional insight into the regulatory mechanisms in the pathogenesis of Chagas` disease.
Resumo:
The K+ channel KCNQ1 (K(V)LQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes, Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR.
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis.
Resumo:
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can e reversed by administration of the selective angiotensin II AT(1)-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110 +/- 4 mmHg (control) to 170 +/- 10 mmHg. Rats developed left ventricular hypertrophy (control 1.70 +/- 0.06; L-NAME 2.10 +/- 0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echo cardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56 +/- 0.14); maximal increase in force before ectopic beats was reduced from 5.0 +/- 0.4 mN to 2.0 +/- 0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2 +/- 2.0 mN to 3.0 +/- 0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT(1)-receptors in L-NAME-induced cardiovascular changes.
Resumo:
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.
Resumo:
The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.