993 resultados para IN-VITRO BIOACTIVITY
Resumo:
The aim of this study was to investigate the in vivo biocompatibility in terms of healing of long segmental bone defect in rabbit model as well as in vitro cytotoxicity of eluates of compression-molded High density polyethylene (HDPE)hydroxyapatite (HA)-aluminum oxide (Al2O3) composite-based implant material. Based on the physical property in terms of modulus and strength properties, as reported in our recent publication, HDPE-40 wt % HA and HDPE-20 wt % HA-20 wt % Al2O3 hybrid composites were used for biocompatibility assessment. Osteoblasts cells were cultured in conditioned media, which contains varying amount of composite eluate (0.01, 0.1, and 1.0 wt %). In vitro, the eluates did not exhibit any significant negative impact on proliferation, mineralization or on morphology of human osteoblast cells. In vivo, the histological assessment revealed neobone formation at the bone/implant interface, characterized by the presence of osteoid and osteoblasts. The observation of osteoclastic activity indicates the process of bone remodeling. No inflammation to any noticeable extent was observed at the implantation site. Overall, the combination of in vitro and in vivo results are suggestive of potential biomedical application of compression-molded HDPE- 20 wt % HA- 20 wt % Al2O3 composites to heal long segmental bone defects without causing any toxicity of bone cells.
Resumo:
Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.
Resumo:
This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (similar to 270 % to that of untreated sample) and SaOS2 (similar to 280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.
Resumo:
In designing and developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of the substrate conductivity on cell fate processes is rather limited. In order to address this issue, spark plasma sintered HA-CaTiO3 (Hydroxyapatite-Calcium titanate) has been used as a model material system to showcase the effect of varying conductivity on cell functionality. Being electroactive in nature, mouse myoblast cells (C2C12) were selected as a model cell line in this study. It was inferred that myoblast adhesion/growth systematically increases with substrate conductivity due to CaTiO3 addition to HA. Importantly, parallel arrangement of myoblast cells on higher CaTiO3 containing substrates indicate that self-adjustable cell patterning can be achieved on conductive biomaterials. Furthermore, enhanced myoblast assembly and myotube formation were recorded after 5 days of serum starvation. Overall, the present study conclusively establishes the positive impact of the substrate conductivity towards cell proliferation and differentiation as well as confirms the efficacy of HA-CaTiO3 biocomposites as conductive platforms to facilitate the growth, orientation and fusion of myoblasts, even when cultured in the absence of external electric field.
Resumo:
The primary objective of the present work was to study the electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, fabricated independently in various electrolyte solutions consisting of anions such as phosphate (PO43-), borate (B4O72-), citrate (C6H5O73-) and silicate (SiO32-). Further the role of anions on the structural, morphological and compositional properties of the fabricated films was studied. All the titania films were developed by micro-arc oxidation (MAO) technique for a fixed treatment time of 8 min under constant current mode. The surface morphology, elemental distribution, composition and structural characteristics of the films were assessed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The thermodynamic and kinetic corrosion properties of the films were studied under simulated body fluid (SBF) conditions (pH 7.4 and 37 degrees C) by conducting chronopotentiometric and potentiodynamic polarization tests. Electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit modelling was carried out to analyse the frequency response and Mott-Schottky analysis was performed to study the semiconducting (electronic) properties of the films. Salt spray fog accelerated corrosion test was conducted for 168h as per ASTM B117 standard to corroborate the corrosion and semiconducting properties of the samples based on the visual examination. The XRD results showed that the transformation from the metastable anatase phase to the thermodynamically stable rutile phase and the crystalline growth of the respective phases were strongly influenced by the addition of anions. The SEM-EDS results demonstrated that the phosphorous (P) content in the films varied from 2.4 at% to 5.0 at% indicating that the amount of P in the films could be modified by adding an appropriate electrolyte additive. The electrochemical corrosion test results showed that the film fabricated in citrate (C6H5O73-) containing electrolyte is thermodynamically and kinetically more stable compared to that of all the others. The results of the Mott-Schottky analysis indicated that all the fabricated films showed an n-type semiconducting behaviour and the film developed in citrate (C6H5O73-) containing electrolyte exhibited the lowest donor concentration and the most negative flat band potential that contributed to its highest corrosion resistance in SBF solution. The results of the salt spray accelerated corrosion tests were in agreement with those obtained from the electrochemical and Mott-Schottky analysis.
Resumo:
The conserved stem domain of influenza virus hemagglutinin (HA) is a target for broadly neutralizing antibodies and a potential vaccine antigen for induction of hetero-subtypic protection. The epitope of 12D1, a previously reported bnAb neutralizing several H3 subtype influenza strains, was putatively mapped to residues 76-106 of the CD-helix, also referred to as long alpha helix (LAH) of the HA stem. A peptide derivative consisting of wt-LAH residues 76-130 conjugated to keyhole limpet hemocyanin was previously shown to confer robust protection in mice against challenge with influenza strains of subtypes H3, H1, and H5 which motivated the present study. We report the design of multiple peptide derivatives of LAH with or without heterologous trimerization sequences and show that several of these are better folded than wt-LAH. However, in contrast to the previous study immunization of mice with wt-LAH resulted in negligible protection against a lethal homologous virus challenge, while some of the newly designed immunogens could confer weak protection. Combined with structural analysis of HA, our data suggest that in addition to LAH, other regions of HA are likely to significantly contribute to the epitope for 12D1 and will be required to elicit robust protection. In addition, a dynamic, flexible conformation of isolated LAH peptide may be required for eliciting a functional anti-viral response. Proteins 2013; 81:1759-1775. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.
Resumo:
Four dinucleating bis(thiosemicarbazone) ligands and their zinc complexes have been synthesized and characterized by multinuclear NMR (H-1 and C-13), IR, UV-Vis, ESI-MS and fluorescence spectroscopic techniques. Their purity was assessed by elemental analysis. Cytotoxicity was tested against five human cancer cell lines using the sulphorhodamine B (SRB) assay, where one of the complexes, 1,3-bis{biacetyl-2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} propane (6), was found to be quite cytotoxic against MCF-7 (breast cancer) and HepG2 (hepatoma cancer) cell lines, with a potency similar to that of the well known anticancer drug adriamycin. It is evident from the cellular uptake studies that the uptake is same for the active complex 6 and the inactive complex 8 (1,6-bis{biacetyl- 2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} hexane) in MCF-7 and HepG2 cell lines. In vitro DNA binding and cleavage studies revealed that all complexes bind with DNA through electrostatic interaction, and cause no significant cleavage of DNA. (C) 2'13 Elsevier B. V. All rights reserved.
Resumo:
The growth of neuroblastoma (N2a) and Schwann cells has been explored on polymer derived carbon substrates of varying micro and nanoscale geometries: resorcinol-formaldehyde (RE) gel derived carbon films and electrospun nanofibrous (similar to 200 nm diameter) mat and SU-8 (a negative photoresist) derived carbon micro-patterns. MTT assay and complementary lactate dehydrogenase (LDH) assay established cytocompatibility of RE derived carbon films and fibers over a period of 6 days in culture. The role of length scale of surface patterns in eliciting lineage-specific adaptive response along, across and on the interspacing between adjacent micropatterns (i.e., ``on'', ``across'' and ``off'') has been assayed. Textural features were found to affect 3',5'-cyclic AMP sodium salt-induced neurite outgrowth, over a wide range of length scales: from similar to 200 nm (carbon fibers) to similar to 60 mu m (carbon patterns). Despite their innate randomness, carbon nanofibers promoted preferential differentiation of N2a cells into neuronal lineage, similar to ordered micro-patterns. Our results, for the first time, conclusively demonstrate the potential of RE-gel and SU-8 derived carbon substrates as nerve tissue engineering platforms for guided proliferation and differentiation of neural cells in vitro. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, we report the synthesis, characterization of new series of thiazolo3,2-a]pyrimidine-6-carboxylate derivatives 3a-f and 4a-f. The newly synthesized compounds were screened for in vitro antimicrobial and antiviral activities. The probable mode of action of these active compounds was determined through in silico docking study by docking the receptor methionyl-tRNA synthetase and human inosine-5'-monophosphate dehydrogenase (IMPDH) for antibacterial and antiviral activities, respectively. Among the compounds, 4c exhibited excellent in vitro antimicrobial activity against all tested strains with binding and docking energies -35.6 and -12.4 kcal/mol, respectively. The antiviral studies were carried out for the selected compounds in which 4a exhibited 73.69 and 54.42 % of inhibition of buffalopox and camelpox viruses, respectively. Furthermore, compound 4a showed minimum docking and binding energy along with the maximum hydrogen/hydrophobic interaction with IMPDH. The study contributes towards identification and screening of potential antimicrobial and antiviral agent's against the pathogens.
Resumo:
alpha-Synuclein aggregation is one of the major etiological factors implicated in Parkinson's disease (PD). The prevention of aggregation of alpha-synuclein is a potential therapeutic intervention for preventing PD. The discovery of natural products as alternative drugs to treat PD and related disorders is a current trend. The aqueous extract of Centella asiatica (CA) is traditionally used as a brain tonic and CA is known to improve cognition and memory. There are limited data on the role of CA in modulating amyloid-beta (A beta) levels in the brain and in A beta aggregation. Our study focuses on CA as a modulator of the alpha-synuclein aggregation pattern in vitro. Our investigation is focused on: (i) whether the CA leaf aqueous extract prevents the formation of aggregates from monomers (Phase I: alpha-synuclein + extract co-incubation); (ii) whether the CA aqueous extract prevents the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) whether the CA aqueous extract disintegrates the pre-formed fibrils (Phase III: extract added to mature fibrils and incubated for 9 days). The aggregation kinetics are studied using a thioflavin-T assay, circular dichroism, and transmission electron microscopy. The results showed that the CA aqueous extract completely inhibited the alpha-synuclein aggregation from monomers. Further, CA extract significantly inhibited the formation of oligomer to aggregates and favored the disintegration of the preformed fibrils. The study provides an insight in finding new natural products for future PD therapeutics.
Resumo:
With the progress in modern technological research, novel biomaterials are being largely developed for various biomedical applications. Over the past two decades, most of the research focuses on the development of a new generation of bioceramics as substitutes for hard tissue replacement. In reference to their application in different anatomical locations of a patient, newly developed bioceramic materials can potentially induce a toxic/harmful effect to the host tissues. Therefore, prior to clinical testing, relevant biochemical screening assays are to be performed at the cellular and molecular level, to address the issues of biocompatibility and long term performance of the implants. Along with testing strategies in the bulk material toxicity, a detailed evaluation should also be conducted to determine the toxicity of the wear products of the potential bioceramics. This is important as the bioceramics are intended to be implanted in patients with longer life expectancy and notwithstanding, the material will eventually release finer (mostly nanosized) sized debris particles due to continuous wear at articulating surfaces in the hostile corrosive environment of the human body. The wear particulates generated from a biocompatible bioceramic may act in a different way, inducing early/late aseptic loosening at the implant site, resulting in osteolysis and inflammation. Hence, a study on the chronic effects of the wear particulates, in terms of local and systemic toxicity becomes the major criteria in the toxicity evaluation of implantable bioceramics. In this broad perspective, this article summarizes some of the currently used techniques and knowledge in assessing the in vitro and in vivo cytotoxicity and genotoxicity of bioceramic implant materials. It also addresses the need to conduct a broad evaluation before claiming the biocompatibility and clinical feasibility of any new biomaterial. This review also emphasizes some of the case studies based on the experimental designs that are currently followed and its importance in the context of clinical applications.
Resumo:
In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.
Resumo:
The present work reports the biocompatibility property of injection molded HDPE-HA-Al2O3 hybrid composites. In vitro cytocompatibility results reveal that osteogenic cell viability and bone mineralization are favorably supported in a statistically significant manner on HDPE-20% HA-20% Al2O3 composite, in comparison to HDPE-40 wt.% HA or HDPE-40 wt.% Al2O3. The difference in cytocompatibility property is explained in terms of difference in substrate wettability/surface energy and importantly, both the cell proliferation at 7 days or bone mineralization at 21 days on HDPE-20% HA-20% Al2O3 composite are either comparable or better than sintered HA. The progressive healing of cylindrical femoral bone defects in rabbit animal model was assessed by implantation experiments over 1, 4 and 12 weeks. Based on the histological analysis as well as histomorphometrical evaluation, a better efficacy of HDPE-20% HA-20% Al2O3 over high-density polyethylene (HDPE) for bone regeneration and neobone formation at host bone-implant interface was established. Taken together, the present study unequivocally establishes that despite the presence of 20% Al2O3, HDPE-based hybrid composites are as biocompatible as HA in vitro or better than HDPE in vivo.