953 resultados para Hypoxia-reoxigenation
Resumo:
The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response.
Resumo:
Hypoxia is a stress condition in which tissues are deprived of an adequate O2 supply; this may trigger cell death with pathological consequences in cardiovascular or neurodegenerative disease. Reperfusion is the restoration of an oxygenated blood supply to hypoxic tissue and can cause more cell injury. The kinetics and consequences of reactive oxygen and nitrogen species (ROS/RNS) production in cardiomyoblasts are poorly understood. The present study describes the systematic characterization of the kinetics of ROS/RNS production and their roles in cell survival and associated protection during hypoxia and hypoxia/reperfusion. H9C2 cells showed a significant loss of viability under 2% O2 for 30min hypoxia and cell death; associated with an increase in protein oxidation. After 4h, apoptosis induction under 2% O2 and 10% O2 was dependent on the production of mitochondrial superoxide (O2-•) and nitric oxide (•NO), partly from nitric oxide synthase (NOS). Both apoptotic and necrotic cell death during 2% O2 for 4h could be rescued by the mitochondrial complex I inhibitor; rotenone and NOS inhibitor; L-NAME. Both L-NAME and the NOX (NADPH oxidase) inhibitor; apocynin reduced apoptosis under 10% O2 for 4h hypoxia. The mitochondrial uncoupler; FCCP significantly reduced cell death via a O2-• dependent mechanism during 2% O2, 30min hypoxia. During hypoxia (2% O2, 4h)/ reperfusion (21% O2, 2h), metabolic activity was significantly reduced with increased production of O2-• and •NO, during hypoxia but, partially restored during reperfusion. O2-• generation during hypoxia/reperfusion was mitochondrial and NOX- dependent, whereas •NO generation depended on both NOS and non-enzymatic sources. Inhibition of NOS worsened metabolic activity during reperfusion, but did not effect this during sustained hypoxia. Nrf2 activation during 2% O2, a sustained hypoxia and reperfusion was O2-•/•NO dependent. Inhibition of NF-?B activation aggravated metabolic activity during 2% O2, 4h hypoxia. In conclusion, mitochondrial O2-•, but, not ATP depletion is the major cause of apoptotic and necrotic cell death in cardiomyoblasts under 2% O2, 4h hypoxia, whereas apoptotic cell death under 10% O2, 4h, is due to NOS-dependent •NO. The management of ROS/RNS rather than ATP is required for improved survival during hypoxia. O2-• production from mitochondria and NOS is cardiotoxic during hypoxia/reperfusion. NF-?B activation during hypoxia and NOS activation during reperfusion is cardiomyoblast protective.
Resumo:
Both reactive oxygen species (ROS) and ATP depletion may be significant in hypoxia-induced damage and death, either collectively or independently, with high energy requiring, metabolically active cells being the most susceptible to damage. We investigated the kinetics and effects of ROS production in cardiac myoblasts, H9C2 cells, under 2%, 10% and 21% O2 in the presence or absence of apocynin, rotenone and carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone. H9C2 cells showed significant loss of viability within 30 min of culture at 2% oxygen which was not due to apoptosis, but was associated with an increase in protein oxidation. However, after 4 h, apoptosis induction was observed at 2% oxygen and also to a lesser extent at 10% oxygen; this was dependent on the levels of mitochondrial superoxide anion radicals determined using dihydroethidine. Hypoxia-induced ROS production and cell death could be rescued by the mitochondrial complex I inhibitor, rotenone, despite further depletion of ATP. In conclusion, a change to superoxide anion radical steady state level was not detectable after 30 min but was evident after 4 h of mild or severe hypoxia. Superoxide anion radicals from the mitochondrion and not ATP depletion is the major cause of apoptotic cell death in cardiac myoblasts under chronic, severe hypoxia.
Resumo:
Contractile response of rat aorta, mesenteric artery and femoral artery to noradrenaline and potassium chloride were studied under standard and hypoxic conditions and the effect of hypoxia was dependent upon both the vessel and the stimulant. Hypoxia had less effect upon contractions to potassium chloride than those to noradrenaline. The effects of hypoxia on potassium chloride induced responses in different vessels were relatively similar although responses to noradrenaline were vessel dependent. Noradrenaline induced contractions of the femoral artery were most affected by hypoxia whilst those of the mesenteric artery were least affected. Hypoxia changed the well maintained response of the femoral artery to noradrenaline to a transient form; this effect of hypoxia was not evident in the aorta or the mesenteric artery. The aorta and mesenteric artery contracted in calcium free EGTA PSS suggesting that these vessels displayed a release component. Hypoxia reduced the magnitude of this component. The effects of verapamil on noradrenaline and potassium chloride induced responses were investigated and were found to be different to those of hypoxia. Verapamil exerted a greater effect on contractions to potassium chloride than on those to noradrenaline. The effects of hypoxia on 45calcium flux were also vessel dependent. In the mesenteric and femoral arteries hypoxia increased basal 45calcium accumulation. However, the magnitude of noradrenaline stimulated 45calcium accumulation was reduced in the femoral artery and aorta but was unchanged in the mesenteric artery. The effects of hypoxia on 45calcium accumulation were similar to verapamil only in the aorta. The results provide evidence that the effects of hypoxia may arise from alterations in calcium mobilisation processes and that differences between vessels in these processes accounts for the heterogeneity between vessels in their response to hypoxia.
Resumo:
Background - Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods - Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings - Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance - Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.
Resumo:
Nickel and cobalt are both known to stimulate the hypoxia-inducible factor-1 (HIF-1a), thus significantly improving blood vessel formation in tissue engineering applications. We have manufactured nickel and cobalt doped bioactive glasses to act as a controlled delivery mechanism of these ions. The resultant structural consequences have been investigated using the methods of isotopic and isomorphic substitution applied to neutron diffraction. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design. Results show that nickel and cobalt adopt a mixed structural role within these bioactive glasses occupying both network-forming (tetrahedral) and network-modifying (5-fold) geometries. Two thirds of the Ni (or Co) occupies a five-fold geometry with the remaining third in a tetrahedral environment. A direct comparison of the primary structural correlations (e.g. Si-O, Ca-O, Na-O and O-Si-O) between the archetypal 45S5 Bioglass® and the Ni and Co glasses studied here reveal no significant differences. This indicates that the addition of Ni (or Co) will have no adverse effects on the existing structure, and thus on in vitro/in vivo dissolution rates and therefore bioactivity of these glasses.