948 resultados para Hypoxia-ischaemia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notochordal cells (NC) remain in the focus of research for regenerative therapy for the degenerated intervertebral disc (IVD) due to their progenitor status. Recent findings suggested their regenerative action on more mature disc cells, presumably by the secretion of specific factors, which has been described as notochordal cell conditioned medium (NCCM). The aim of this study was to determine NC culture conditions (2D/3D, fetal calf serum, oxygen level) that lead to significant IVD cell activation in an indirect co-culture system under normoxia and hypoxia (2% oxygen).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CSPG4 marks pericytes, undifferentiated precursors and tumor cells. We assessed whether the shed ectodomain of CSPG4 (sCSPG4) might circulate and reflect potential changes in CSPG4 tissue expression (pCSPG4) due to desmoplastic and malignant aberrations occurring in pancreatic tumors. Serum sCSPG4 was measured using ELISA in test (n = 83) and validation (n = 221) cohorts comprising donors (n = 11+26) and patients with chronic pancreatitis (n = 11+20) or neoplasms: benign (serous cystadenoma SCA, n = 13+20), premalignant (intraductal dysplastic IPMNs, n = 9+55), and malignant (IPMN-associated invasive carcinomas, n = 4+14; ductal adenocarcinomas, n = 35+86). Pancreatic pCSPG4 expression was evaluated using qRT-PCR (n = 139), western blot analysis and immunohistochemistry. sCSPG4 was found in circulation, but its level was significantly lower in pancreatic patients than in donors. Selective maintenance was observed in advanced IPMNs and PDACs and showed a nodal association while lacking prognostic relevance. Pancreatic pCSPG4 expression was preserved or elevated, whereby neoplastic cells lacked pCSPG4 or tended to overexpress without shedding. Extreme pancreatic overexpression, membranous exposure and tissue(high)/sera(low)-discordance highlighted stroma-poor benign cystic neoplasm. SCA is known to display hypoxic markers and coincide with von-Hippel-Lindau and Peutz-Jeghers syndromes, in which pVHL and LBK1 mutations affect hypoxic signaling pathways. In vitro testing confined pCSPG4 overexpression to normal mesenchymal but not epithelial cells, and a third of tested carcinoma cell lines; however, only the latter showed pCSPG4-responsiveness to chronic hypoxia. siRNA-based knockdowns failed to reduce the malignant potential of either normoxic or hypoxic cells. Thus, overexpression of the newly established conditional hypoxic indicator, CSPG4, is apparently non-pathogenic in pancreatic malignancies but might mark distinct epithelial lineage and contribute to cell polarity disorders. Surficial retention on tumor cells renders CSPG4 an attractive therapeutic target. Systemic 'drop and restoration' alterations accompanying IPMN and PDAC progression indicate that the interference of pancreatic diseases with local and remote shedding/release of sCSPG4 into circulation deserves broad diagnostic exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Acute leg ischaemia (ALI) is a common vascular emergency for which new minimally invasive treatment options were introduced in the 1990s. The aim of this study was to determine recent hospital trends for ALI in England and to assess whether the introduction of the new treatment modalities had affected management. METHODS Routine hospital data covering ALI were provided by Hospital Episode Statistics for the years 2000 to 2011 and mortality data were obtained from the Office for National Statistics. All data were age standardised, reported per 100,000 of the population, and stratified by age band (60-74 years and ≥75 years) and sex. RESULTS Hospital admissions have risen significantly from 60.3 to 94.3 per 100,000 of the population, with an average annual increase of 6.2% since 2003 (p<0.001). The rise was greater in the older age group (from 79.9 to 134.4 vs 49.3 to 73.0) and yet procedures for ALI have shown a significant decrease since 2000 from 14.3 to 12.4 per 100,000 (p=0.013), independent of age and sex. Open embolectomy of the femoral artery remains the most common procedure and the proportion of endovascular interventions showed only a small increase. Only a few deaths were attributed to ALI (range: 95-150 deaths per year). CONCLUSIONS Hospital workload for ALI has increased, particularly since 2003, but this trend does not appear to have translated into increased endovascular or surgical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Low levels of oxygen has been shown to be involved in the induction of osteogenesis, particularly in bone repair. It is unknown whether hypoxia leads to osteogenesis at the hypoxia prone skeletal sites in limited systemic sclerosis. This study determined the total and trabecular volumetric bone mineral density (vBMD) at the hypoxia prone site of the juxta-articular metacarpal bone. METHODS In this cross-sectional study, female patients with limited systemic sclerosis were included and compared to healthy controls. Peripheral quantitative computed tomography was used to measure cross-sectional area, total vBMD, and trabecular vBMD at the radius, the tibia and the third metacarpal bone. Disease severity was assessed by the modified Rodnan Skin Score. RESULTS Twenty consecutive patients were included in the sclerosis group and 20 in the control group. Mean age was 60 years (range 52-68 years), and mean disease duration was 45 months (range 4-156 months). Age, height, and weight were comparable between the groups. The mean modified Rodnan Skin Score was 1.78 (range 0 to 8). The sclerosis group showed both higher total and trabecular vBMD at the distal metacarpal bone (p=0.05 and 0.04, respectively). vBMD of the tibia and radius did not differ in both groups. CONCLUSIONS vBMD at the juxta-articular metacarpal bone in patients with limited systemic sclerosis is increased, possibly due to an alteration in local bone metabolism and hypoxia induced local osteogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intratumoral hypoxia is prevalent in many solid tumors and is a marker of poor clinical prognosis in prostate cancer. The presence of hypoxia is associated with increased chromosomal instability, gene amplification, downregulation of DNA damage repair pathways, and altered sensitivity to agents that damage DNA. These genomic changes could also lead to oncogene activation or tumor suppressor gene inactivation during prostate cancer progression. We review here the concept of repair-deficient hypoxic tumor cells that can adapt to low oxygen levels and acquire an aggressive "unstable mutator" phenotype. We speculate that hypoxia-induced genomic instability may also be a consequence of aberrant mitotic function in hypoxic cells, which leads to increased chromosomal instability and aneuploidy. Because both hypoxia and aneuploidy are prognostic factors in prostate cancer, a greater understanding of these biological states in prostate cancer may lead to novel prognostic and predictive tests and drive new therapeutic strategies in the context of personalized cancer medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability; however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC); brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury; however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. METHODS Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF); 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. RESULTS Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively; P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%; P < 0.01 for all) in LoR subgroups. CONCLUSIONS Effects of MPC depend on energy substrate availability; MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Cerebral hypoxic-ischaemic injury following cardiac arrest is a devastating disease affecting thousands of patients each year. There is a complex interaction between post-resuscitation injury after whole-body ischaemia-reperfusion and cerebral damage which cannot be explored in in vitro systems only; there is a need for animal models. In this study, we describe and evaluate the feasibility and efficiency of our simple rodent cardiac arrest model. METHODS Ten wistar rats were subjected to 9 and 10 minutes of cardiac arrest. Cardiac arrest was introduced with a mixture of the short-acting beta-blocking drug esmolol and potassium chloride. RESULTS All animals could be resuscitated within 1 minute, and survived until day 5.General health score and neurobehavioural testing indicated substantial impairment after cardiac arrest, without differences between groups. Histological examination of the hippocampus CA1 segment, the most vulnerable segment of the cerebrum, demonstrated extensive damage in the cresyl violet staining, as well as in the Fluoro-Jade B staining and in the Iba-1 staining, indicating recruitment of microglia after the hypoxic-ischaemic event. Again, there were no differences between the 9- and 10-minute cardiac arrest groups. DISCUSSION We were able to establish a simple and reproducible 9- and 10-minute rodent cardiac arrest models with a well-defined no-flow-time. Extensive damage can be found in the hippocampus CA1 segment. The lack of difference between 9- and 10-minute cardiac arrest time in the neuropsychological, the open field test and the histological evaluations is mainly due to the small sample size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Exposure to high altitudes is associated with oxidative cellular damage due to the increased level of reactive oxygen and nitrogen species and altered activity of antioxidant systems. Subjects were submitted to prolonged hypoxia, to evaluate changes in mitochondrial enzyme activities of monocytes and their attenuation by supplementation with antioxidants. METHODS Twelve subjects were randomly assigned to receive antioxidant supplements or placebo prior to and during an expedition to Pik Lenin (7145 m). Monocytes were isolated from blood samples to determine the activity of mitochondrial enzymes cytochrome c oxidase and citrate synthase at 490 m (baseline) and at the altitudes of 3550 m, 4590 m, and 5530 m. RESULTS An increase in citrate synthase activity at all altitudes levels was observed. Hypoxia induced an increase in the activity of cytochrome c oxidase only at 4590 m. Neither citrate synthase activity nor cytochrome c oxidase activity differed between the subjects receiving antioxidant supplements and those receiving placebo. CONCLUSIONS Hypoxia leads to an increase in citrate synthase activity of monocyte mitochondria as a marker of mitochondrial mass, which is not modified by antioxidant supplementation. The increase in mitochondrial mass may represent a compensatory mechanism to preserve oxidative phosphorylation of monocytes at high altitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deregulated signaling via receptor tyrosine kinase (RTK) pathways is prevalent in numerous types of human cancers and is commonly correlated with worst prognosis, resistance to various treatment modalities and increased mortality. Likewise, hypoxic tumors are often manifested by aggressive mode of growth and progression following an adaptive genetic reprogramming with consequent transcriptional activation of genes encoding proteins, which support tumor survival under low oxygen-related conditions. Consequently, both the hypoxia-inducible factor (HIF) system, which is the major mediator of hypoxia-related signaling, and numerous RTK systems are considered critical molecular targets in current cancer therapy. It is now evident that there is an intricate molecular crosstalk between RTKs and hypoxia-related signaling in the sense that hypoxia can activate expression of particular RTKs and/or their corresponding ligands, while some RTK systems have been shown to trigger activation of the HIF machinery. Moreover, signaling regulation of some RTK systems under hypoxic conditions has also been documented to take place in a HIF-independent manner. With this review we aim at overviewing the most current observations on that topic and highlight the importance of the potential co-drugging the HIF system along with particular relevant RTKs for better tumor growth control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gebiet: Chirurgie Abstract: OBJECTIVES: – The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability, however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC), brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury, however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. – – METHODS: – Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF), 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. – – RESULTS: – Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively, P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%, P < 0.01 for all) in LoR subgroups. – – CONCLUSIONS: – Effects of MPC depend on energy substrate availability, MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^