931 resultados para Hygromycin-b Resistance
Resumo:
Haemonchus contortus is one of the most common and economically significant causes of disease in small ruminants worldwide, and the control programs of parasitic nematodes - including H. contortus - rely mostly on the use of anthelmintic drugs. The consequence of the use of this, as the sole sanitary strategy to avoid parasite infections, was the reduction of the efficacy of all chemotherapeutic products with a heavy selection for resistance. The widespread of anthelmintic resistance and the difficulty of its early diagnosis has been a major concern for the sustainable parasite management on farms. The objective of this research was to determine and compare the ivermectin (IVM) and moxidectin (MOX) effect in a selected field strain of H. contortus with a known resistance status, using the in vitro larval migration on agar test (LMAT). Third stage larvae of the selected isolate were obtained from faecal cultures of experimentally infected sheep and incubated in eleven increasing diluted concentrations of IVM and MOX (6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072 and 6144µg/mL). The dose-response sigmoidal curves were obtained using the R² value of >0.90 and the lethal concentration (LC50) dose for the tested anthelmintic drugs using a four-parameter logistic model. The LC50 value for MOX was significantly lower than IVM (1.253µg/mL and 91.06µg/mL), identifying the H. contortus isolate as considerably less susceptible to IVM compared to MOX. Furthermore, the LMAT showed a high consistency (p<0.0001) and provided to be a useful diagnostic tool for monitoring the resistance status of IVM and MOX in H. contortus field isolate, as well as it may be used for official routine drug monitoring programs under the Ministry of Agriculture (MAPA) guidance.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Abstract The study was carried out to screen and analyze the genetic characteristics of antimicrobial resistance in Campylobacter spp. from poultry sources. A total of 141 strains of Campylobacter isolated from samples of broilers of slaughterhouses in southern Brazil was identified by phenotypic and genotypic methods. Campylobacter isolates were evaluated for its antimicrobial susceptibility and the presence of resistance genes. The strains were investigated for antimicrobial susceptibility against two agents (ampicillin and tetracycline) by disk diffusion method. PCR assay was used to confirm the specie and the presence of ampicillin (blaOXA-61), tetracycline tet(O), and the energy-dependent multi-drug efflux pump (cmeB) genes. Campylobacter jejuni was the most ubiquitous; its presence was determined in 140 samples out of 141 (99.3%), whereas Campylobacter coli was found only in one of the contaminated samples (0.70%). The results obtained showed 65% and 35.5% of Campylobacter isolates resistant to β-lactams and tetracyclines, respectively. The cmeB gene responsible for multidrug resistance was detected in 26 isolates out 141 strains (18.5%). Moreover, 36 out of 141 Campylobacter strains (25.6%) were found to be resistant to at least two different antimicrobia resistance markers (β-lactams and tetracyclines).
Resumo:
Abstract: Rhodococcus equi is a facultative intracellular pathogen, which cause severe pyogranulomatous pneumonia in foals and tuberculosis-like lesions in humans. Its ability to form biofilm was described in strains isolated from chronic diseases associated to treatment failures in humans. This study aimed to verify the biofilm formation by 113 R. equi isolated from equine samples (clinical and fecal) using two different methods (biofilm-culturing with and without additional glucose and epifluorescence microscopy). We also aimed to determine the efficacy of azithromycin, clarithromycin and erythromycin on R. equi in established biofilm. We found 80.5% (26/41) and 63% (58/72) biofilm-positive isolates, in fecal and clinical samples, respectively. The additional glucose increased the biofilm formation by R. equi fecal samples, but not by clinical samples. The antimicrobials tested herein were not able to eradicate R. equi in biofilm even at higher concentrations. This is the first study showing the biofilm formation by R. equi isolated from equine samples. Our findings indicate that R. equi biofilm-producers may be more resistant to the antimicrobials evaluated. Further studies are warranted to test this hypothesis.
Resumo:
Weed resistance to herbicides has been a major issue in Brazil, mainly due to the inefficiency of the herbicides used in no-till areas and to the high cost of these herbicide treatments. Failures in controlling the weed Conyza have been reported in Western and Northern grain crop areas in Paraná (Brazil). This work aimed to evaluate the potential occurrence of C. sumatrensis biotypes resistant to the herbicides chlorimuron-ethyl and glyphosate. Experiments were carried out under greenhouse conditions with four biotypes (Cascavel-2, Toledo-4, Tupãssi-6, and Assis Chateaubriand-7) possibly resistant to, as well as a population considered susceptible to chlorimuron-ethyl and glyphosate. To obtain dose-response curves, eight herbicide doses of chlorimuron-ethyl (0, 2.5, 5, 10, 20, 40, 80 and 160 g ha-1) and glyphosate (0, 90, 180, 360, 720, 1,440, 2,880 and 5,760 g e.a. ha-1) were applied and weed control and shoot biomass evaluations were made. Results provided evidence that two biotypes (Cascavel-2 and Tupãssi-6) were resistant to glyphosate and four biotypes (Cascavel-2, Toledo-4, Tupãssi-6 and Assis Chateaubriand-7) were resistant to chlorimuronethyl. Multiple resistance to glyphosate and chlorimuron was confirmed for biotypes Cascavel2 and Tupãssi 6. This is the first report on multiple resistance in Conyza sumatrensis, worldwide.
Resumo:
Due to the limited number of herbicides registered for the control of dicot weeds in cotton crops, ALS inhibitors have been used on an intensive and recurrent basis. Given that, cases of poor weed control have been described after application of these herbicides in the main cotton producing areas in Brazil, the purpose of the present work was to evaluate the occurrence of resistance to ALS herbicides in Amaranthus viridis biotypes from those areas. Dose-response curves were prepared after pre-emergence applications of trifloxysulfuron-sodium (0; 1.8; 3.7; 7.5; 15 and 30 g ha-1) and pyrithiobac-sodium (0; 35; 70; 140; 280 and 560 g ha-1), equivalent to 0, ¼, ½, 1, 2 and 4 times the recommended commercial rates. The selection of trifloxysulfuron-sodium resistant biotypes of A. viridis was confirmed in samples from Bahia (BA 7, BA 8, BA 9 and BA 11). However, no resistance to pyrithiobac-sodium was found for biotypes either from Bahia or from Mato Grosso do Sul.
Resumo:
Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.
Resumo:
From 1989 to 1995, a total of 391 Haemophilus influenzae isolates were recovered from the cerebrospinal fluid (CSF) of hospitalized patients in São Paulo, Brazil. The majority of strains were isolated from infants aged less than 5 years. Strains belonging to biotype I (64.7%), biotype II (34.5%) and biotype IV (0.76%) were detected. Ninety-nine percent of these strains were serotype b. Minimal inhibitory concentration (MIC) was determined for ampicillin, chloramphenicol and ceftriaxone. The ß-lactamase assay was performed for all strains. The rate of ß-lactamase producer strains ranged from 10 to 21.4% during a period of 7 years, with an overall rate of 13.8%. Of the 391 strains analyzed, none was ß-lactamase negative ampicillin resistant (BLNAR). A total of 9.7% of strains showed resistance to both ampicillin and chloramphenicol; however, 4% of them were resistant to ampicillin only and 2% to chloramphenicol. All strains were susceptible to ceftriaxone and the MIC90 was 0.007 µg/ml, suggesting that ceftriaxone could be an option for the treatment of bacterial meningitis in pediatric patients who have not been screened for drug sensitivity.
Resumo:
The multidrug resistance P-glycoprotein is a transmembrane efflux pump expressed by lymphocytes and is involved in their cytolytic activity. In the present study, we investigated the age-related changes of P-glycoprotein function in normal peripheral blood lymphocytes. Blood samples from 90 normal volunteers (age range, 0 to 86 years) were analyzed. P-glycoprotein function was assessed by the flow cytometric rhodamine 123 assay. P-glycoprotein function was highest in cord blood and progressively declined with age in peripheral blood T CD4+ and CD8+ cells. In contrast, P-glycoprotein function did not vary with age in CD19+ B or CD16+CD56+ natural killer cells. These data suggest that the decline in P-glycoprotein function in T CD4+ and CD8+ lymphocytes as a function of age may contribute to the decrease in T cell cytolytic activity with aging.
Resumo:
Crude brain homogenates of terminally diseased hamsters infected with the 263 K strain of scrapie (PrP Sc) were heated and/or pressurized at 800 MPa at 60ºC for different times (a few seconds or 5, 30, 120 min) in phosphate-buffered saline (PBS) of different pH and concentration. Prion proteins were analyzed on immunoblots for their proteinase K (PK) resistance, and in hamster bioassays for their infectivity. Samples pressurized under initially neutral conditions and containing native PrP Sc were negative on immunoblots after PK treatment, and a 6-7 log reduction of infectious units per gram was found when the samples were pressurized in PBS of pH 7.4 for 2 h. A pressure-induced change in the protein conformation of native PrP Sc may lead to less PK resistant and less infectious prions. However, opposite results were obtained after pressurizing native infectious prions at slightly acidic pH and in PBS of higher concentration. In this case an extensive fraction of native PrP Sc remained PK resistant after pressure treatment, indicating a protective effect possibly due to induced aggregation of prion proteins in such buffers.
Resumo:
Given the loss of therapeutic efficacy associated with the development of resistance to lamivudine (LMV) and the availability of new alternative treatments for chronic hepatitis B patients, early detection of viral genotypic resistance could allow the clinician to consider therapy modification before viral breakthrough and biochemical relapse occur. To this end, 28 LMV-treated patients (44 ± 12 years; 24 men), on their first therapy schedule, were monitored monthly at four Brazilian centers for the emergence of drug resistance using the reverse hybridization-based INNO-LiPA HBV DR assay and occasionally sequencing (two cases). Positive viral responses (HBV DNA clearance) after 6, 12, and 18 months of therapy were achieved by 57, 68, and 53% of patients, while biochemical responses (serum alanine aminotransferase normalization) were observed in 82, 82, and 53% of cases. All viral breakthrough cases (N = 8) were related to the emergence of YMDD variants observed in 7, 21, and 35% of patients at 6, 12, and 18 months, respectively. The emergence of these variants was not associated with viral genotype, HBeAg expression status, or pretreatment serum alanine aminotransferase levels. The detection of resistance-associated mutations was observed before the corresponding biochemical flare (41 ± 14 and 60 ± 15 weeks) in the same individuals. Then, if highly sensitive LMV drug resistance testing is carried out at frequent and regular intervals, the relatively long period (19 ± 2 weeks) between the emergence of viral resistance and the onset of biochemical relapse can provide clinicians with ample time to re-evaluate drug therapy.
Resumo:
The availability of HIV-1 genotype resistance testing (GRT) to clinicians has been insufficiently studied outside randomized clinical trials. The present study evaluated the outcome of salvage antiretroviral therapy (ART) recommended by an expert physician based on GRT in a non-clinical trial setting in Ribeirão Preto, Brazil. A prospective, open, nonrandomized study evaluating easy access to GRT at six Brazilian AIDS Clinics was carried out. This cooperative study analyzed the efficacy of treatment recommended to patients whose salvage ART was guided by GRT with that of treatment with ART based only on previous ART history. A total of 112 patients with ART failure were included in the study, and 77 of them were submitted to GRT. The median CD4 cell count and viral load for these 77 patients at baseline were (mean ± SD) 252.1 ± 157.4 cells/µL and 4.60 ± 0.5 log10 HIV RNA copies/mL, respectively. The access time, i.e., the time elapsed between ordering the GRT and receiving the result was, on average, 71.9 ± 37.3 days. The study results demonstrated that access to GRT followed by expert recommendations did not improve the time to persistent treatment failure when compared to conventional salvage ART. Access to GRT in this Brazilian community health care setting did not improve the long-term virologic outcomes of HIV-infected patients experiencing treatment failure. This result is probably related to the long time required to implement ART guided by GRT.
Resumo:
The objective of the present study was to assess the effects of the immunosuppressant rapamycin (Rapamune®, Sirolimus) on both resistance vessel responsiveness and atherosclerosis in apolipoprotein E-deficient 8-week-old male mice fed a normal rodent diet. Norepinephrine (NE)-induced vasoconstriction, acetylcholine (ACh)- and sodium nitroprusside (SNP)-induced vasorelaxation of isolated mesenteric bed, and atherosclerotic lesions were evaluated. After 12 weeks of orally administered rapamycin (5 mg·kg-1·day-1, N = 9) and compared with untreated (control, N = 9) animals, rapamycin treatment did not modify either NE-induced vasoconstriction (maximal response: 114 ± 4 vs 124 ± 10 mmHg, respectively) or ACh- (maximal response: 51 ± 8 vs 53 ± 5%, respectively) and SNP-induced vasorelaxation (maximal response: 73 ± 6 vs 74 ± 6%, respectively) of the isolated vascular mesenteric bed. Despite increased total cholesterol in treated mice (982 ± 59 vs 722 ± 49 mg/dL, P < 0.01), lipid deposition on the aorta wall vessel was significantly less in rapamycin-treated animals (37 ± 12 vs 68 ± 8 µm² x 10³). These results indicate that orally administered rapamycin is effective in attenuating the progression of atherosclerotic plaque without affecting the responsiveness of resistance vessels, supporting the idea that this immunosuppressant agent might be of potential benefit against atherosclerosis in patients undergoing therapy.
Resumo:
C57BL/6 mice develop signs and symptoms comparable, in part, to the human metabolic syndrome. The objective of the present study was to evaluate the effects of exercise training on carbohydrate metabolism, lipid profile, visceral adiposity, pancreatic islet alterations, and nonalcoholic fatty liver disease in C57BL/6 mice. Animals were fed one of two diets during an 8-week period: standard (SC, N = 12) or very high-fat (HF, N = 24) chow. An exercise training protocol (treadmill) was then established and mice were divided into SC and HF sedentary (SC-Sed, HF-Sed), exercised groups (SC-Ex, HF-Ex), or switched from HF to SC (HF/SC-Sed and HF/SC-Ex). HF/HF-Sed mice had the greatest body mass (65% more than SC/SC-Sed; P < 0.0001), and exercise reduced it by 23% (P < 0.0001). Hepatic enzymes ALP (+80%), ALT (+100%) and AST (+70%) were higher in HF/HF mice than in matched SC/SC. Plasma insulin was higher in both the HF/HF-Sed and HF/SC-Sed groups than in the matched exercised groups (+85%; P < 0.001). Pancreatic islets, adipocytes and liver structure were greatly affected by HF, ultimately resulting in islet β-cell hypertrophy and severe liver steatosis. The HF group had larger islets than the SC/SC group (+220%; P < 0.0001), and exercise significantly reduced liver steatosis and islet size in HF. Exercise attenuated all the changes due to HF, and the effects were more pronounced in exercised mice switched from an HF to an SC diet. Exercise improved the lipid profile by reducing body weight gain, visceral adiposity, insulin resistance, islet alterations, and fatty liver, contributing to obesity and steatohepatitis control.
Resumo:
Arsenic trioxide (ATO) is a strong inducer of apoptosis in malignant hematological cells. Inducible phosphatidyl inositol 3 kinase (PI3K)-Akt activation promotes resistance to ATO. In the present study, we evaluated whether E3 ubiquitin ligase Cbl-b, a negative regulator of PI3K activation, is involved in the action of ATO. The effect of ATO on cell viability was measured by the Trypan blue exclusion assay or by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined by flow cytometry and protein expression was assayed by Western blotting. ATO decreased the viability of HL60 cells and induced cellular apoptosis, which was accompanied by transient activation of Akt. The PI3K/Akt inhibitor, LY294002, significantly increased ATO-induced apoptosis (P < 0.05). In addition, ATO up-regulated the expression of Cbl-b proteins. Furthermore, ATO inhibited cell viability with an IC50 of 18.54 μM at 24 h in rat basophilic leukemia-2H3 cells. ATO induced cellular apoptosis with transient activation of Akt and Cbl-b was also up-regulated. Rat basophilic leukemia-2H3 cells transfected with a dominant negative (DN) Cbl-b mutation showed overexpression of Cbl-b (DN) and enhanced Akt activation. Compared with cells transfected with vector, ATO-induced apoptosis was decreased and G2/M phase cells were increased at the same concentration (P < 0.05). The PI3K/Akt inhibitor, LY294002, re-sensitized Cbl-b (DN) overexpressing cells to ATO and reversed G2/M arrest (P < 0.05). Taken together, these results suggest that Cbl-b potentiates the apoptotic action of ATO by inhibition of the PI3K/Akt pathway.