951 resultados para Hydrous niobium phosphate
Resumo:
The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.
Resumo:
The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.
Resumo:
The stability constants and species distributions of complexes of two lanthanide ions, Eu (III) and Tb(III), with a macrocyclic ligand, 3,6, 9, 17 20, 23-hexaazo-29, 30-dihydroxy-13, 27-dimethyl-tricylco-[23,3,1,1(11,15)] triaconta-1 (28) 11,13,15 (30), 25 26-hexane (BDBPH), in 1: 1 and 2: 1 system, were determined potentiometrically in 50% ethanol solution, at 35.0 degrees C and I = 0.100 mol/L (KCl). The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH with high stability after the three protons of the ligand completely neutralized. At higher pH values, Eu(M) could not form hydroxo complexes with BDBPH, while Tb(III) could form hydroxo complexes in the types of M2L(OH) M2L(OH)(2) and M2L (OH)(2). The kinetic study on the hydrolysis reaction of his (4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system (2:1) was carried out in aqueous solution (pH 7.0 similar to 10.0) at 35 degrees C with I = 0.1000 mol/L (KCl). The second-order rate constant k(BNPP) (2.3 x 10(-3) (mol/L)(-1)center dot s(-1)) was determined. The dinuclear monohydroxo species, L-Tb-2-OH, is kinetically active species.
Resumo:
An organic-inorganic hybrid molybdenum phosphate, Na-2[{Mn(phen)(2)(H2O)} {Mn(phen)(2)}(3){(MnMo12O24)-O-v (HPO4)(6)(PO4)(2) (OH)(6)}] . 4H(2)O (phen=1,10-phenanthroline), involving molybdenum present in V oxidation state and covalently bonded transition metal coordination complexes, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a=16.581(l)Angstrom, b=18.354(1)Angstrom, c=24.485(2)Angstrom, alpha=80.589(l)degrees, beta=71.279(1)degrees, gamma=67.084(1)degrees, V=6493.8(8)Angstrom(3), Z=2, lambda(MoKalpha)=0.71073Angstrom (R(F)=0.0686 for 29,053 reflections). Data were collected on a Bruker Smart Apex CCD diffractometer at 293 K in the range of 1.76 < theta < 28.06degrees using omega-2theta scans technique. The structure of the title compound may be considered to be based on {Mo6O12(HPO4)(3)(PO4)(OH)(3)} units bonded together with {Mn(phen)(2)} subunits into a two-dimensional network. Two types of tunnels are observed in the solid of the title compound.
Resumo:
A new iron hydrogen phosphate, heptairon bis(phosphate) tetrakis(hydrogenphosphate), Fe-7(PO4)(2)(HPO4)(4), has been prepared hydrothermally and characterized by single-crystal X-ray diffraction. The compound has one Fe atom on an inversion centre and is isostructural with Mn-7(PO4)(2)(HPO4)(4) and Co-7(PO4)(2)(HPO4)(4). The structure is based on a framework of edge- and corner-sharing FeO6, Fe-5 and PO4 polyhedra, isotypic with that found in the mixed-valence iron phosphate Fe-7(PO4)(6). The Fe atoms in the title compound are purely in the divalent state, just like the Co atoms in Co-7(PO4)(2)(HPO4)(4), the necessary charge balance being maintained by the addition of H atoms in the form of bridging Fe-OH-P groups.
Resumo:
Methylene blue-intercalated a-zirconium phosphate (MBZrP) micro particles in deionized water were deposited onto the surface of graphite powder to prepare graphite powder-supported MBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite. The composite was used as electrode material to fabricate a surface-renewable, rigid, leak-free carbon ceramic composite electrode, bulk-modified with methylene blue (MB). In the configuration, alpha-zirconium phosphate was employed as a solid host for MB, which acted as a catalyst. Graphite powder ensured conductivity by percolation, the silicate provided a rigid porous backbone and the methyl groups endowed hydrophobicity and thus limited the wetting section of the modified electrode. Peak currents of the MBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled at high scan rates. Square-wave voltammetric study revealed that MBZrP immobilized in carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution with pH ranged from 0.44 to 2.94. In addition, the chemically modified electrode showed an electrocatalytic activity toward nitrite reduction at +0.15 V (vs. Ag/AgCl) in acidic aqueous solution (pH=0.44). The linear range and detection limit are 1 x 10(-6)-4 x 10(-3) mol L-1 and 1.5 x 10(-7) mol L-1, respectively.
Resumo:
New methylene blue-intercalated a-zirconium phosphate (NMBZrP) was synthesized in the presence of n-butylamine and characterized by powder XRD, FTIR, TEM and elemental analysis. Sub-micron particles of NMBZrP in deionized water were apt to deposit onto the surface of graphite powder to yield graphite powder-supported NMBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing new methylene blue. Cyclic voltammetric studies revealed that peak currents of the NMBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled. at high scan rates. In addition, NMBZrP immobilized in a carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution in the pH range from 0.52 to 3.95.
Resumo:
A chromic molybdenum phosphate, (NH3CH2CH2NH3)(2).(NH3CH2CH2NH2)(3).[NaCr2Mo12O30(PO4)(HPO4)(3)]. 6H(2)O, involving molybdenum present in V oxidation, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction and IR spectrum. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a = 12.067(2), b = 14.677(3), c = 21.290(2) Angstrom, alpha = 80.940(10)degrees, beta = 82.960(10)degrees, gamma = 76.61(2)degrees. The structure of the title compound may be considered to be two [Mo6O15(HPO4)(H2PO4)(3)](5-) units bonded to a chromic atom, although several P-O groups are not protonated on account of coordination with a Na+ cation. The one-dimensional tunnels were formed in the solid of the title compound. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new two-dimensional hybrid zinc phosphate with electro-neutral open-framework has been hydrothermally synthesized by using imidazole as a structure-directing agent, whose structure is characterized with 3-, 4-, 5, and 12-ring layers and coordination bonds between imidazole groups and zinc atoms, resulting in primary building units of ZnO2N2 and ZnO3N.
Resumo:
A manganese molybdenum phosphate, (NH3CH2CH2NH3)(10)(H3O)(3)(H5O)Na-2[MnMo12O24(OH)(6) (PO4)(4)(PO3OH)(4)][MnMo12O24 (OH)(6)(PO4)(6)(PO3OH)(2)]. 9H(2)O, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The structure of this compound may be considered to be two [Mo6O12(OH)(3)(PO4)(2)(HPO4)(2)](7-) units bonded together by a manganese atom, although several P-O groups are not protonated on account of coordination to a Na+ cation. One-dimensional tunnels were formed in the solid. A probe reaction of the oxidation of acetaldehyde with H2O2 using this compound as catalyst was carried out in a liquid-solid system, showing that the manganese molybdenum phosphate has high catalytic activity in the reaction.
Resumo:
A nickel molybdenum phosphate, (NH3CH2CH2NH3)(4).(NH3CH2CH2NH2). Na .[Ni2Mo12O30(PO4)(HPO4)(4)(H2PO4)(3)]. 6H(2)O, invoicing molybdenum present in V oxidation, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a = 12,011(2), b = 14,612(3), c = 21.252(4) Angstrom, alpha = 80.54(2)degrees, beta = 83.10(2)degrees, gamma = 76.29(2)degrees, V = 3561.4(12) Angstrom(3), Z = 2, lambda(MoK alpha) = 0.71073 Angstrom (R(F) = 0.0529 for 9880 reflections), Data mere collected on a Siemens P4 diffractometer at 20 degrees C in the range of 1.75 degrees < theta < 23.02 degrees using the omega-scan technique. The structure was solved by direct methods using the program SHELXTL-93 and refined with the method of fun-matrix least-squares on F-2. The structure of the title compound may be considered to be two [Mo6O15(HPO4)(H2PO4)(3)](5-) units bonded together with a nickel atom, although several P-O groups are not protonated on account of coordination with a Na+ cation, The one-dimensional tunnels were formed in the solid of the title compound. A probe reaction of the oxidation of acetaldehyde with H2O2 using the title compound as catalyst was carried out in a liquid- solid system, showing that the title compound had high catalytic activity in the reaction, (C) 1999 Academic Press.
Resumo:
Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A new ferric molybdenum phosphate containing a tunnel structure and crystallographically different clusters has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. A probe reaction of the oxidation of acetaldehyde with H2O2 using the tide compound as catalyst was carried out in a liquid-solid system, showing that the title compound had high catalytic activity in the reaction. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The enzymatic degradation of poly(epsilon-caprolactone) (PCL) films in phosphate buffer solution containing lipases has been studied by DSC, WAXD and SEM. Three lipases, pseudomonas lipase (PS), porcine pancreatic lipase (PP), and candida cylindracea lipase (AY), were used. The results showed that the degradation of PCL films in phosphate buffer solution containing PP or AY was very slow: no weight loss could be found within 1 week. However, PCL film could degrade rapidly and completely within 4 days in phosphate buffer solution containing PS lipase. (C) 1997 Elsevier Science Limited.