981 resultados para Humidity.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seeds in the field experience wet-dry cycling that is akin to the well-studied commercial process of seed priming in which seeds are hydrated and then re-dried to standardise their germination characteristics. To investigate whether the persistence (defined as in situ longevity) and antioxidant capacity of seeds are influenced by wet-dry cycling, seeds of the global agronomic weed Avena sterilis ssp. ludoviciana were subjected to (1) controlled ageing at 60% relative humidity and 53.5°C for 31 days, (2) controlled ageing then priming, or (3) ageing in the field in three soils for 21 months. Changes in seed viability (total germination), mean germination time, seedling vigour (mean seedling length), and the concentrations of the glutathione (GSH) / glutathione disulphide (GSSG) redox couple were recorded over time. As controlled-aged seeds lost viability, GSH levels declined and the relative proportion of GSSG contributing to total glutathione increased, indicative of a failing antioxidant capacity. Subjecting seeds that were aged under controlled conditions to a wet-dry cycle (to −1 MPa) prevented viability loss and increased GSH levels. Field-aged seeds that underwent numerous wet-dry cycles due to natural rainfall maintained high viability and high GSH levels. Thus wet-dry cycles in the field may enhance seed longevity and persistence coincident with re-synthesis of protective compounds such as GSH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of ergot (Claviceps africana) in naturally infected sorghum was assessed in feedlot rations. Thirty-two Hereford steers (Bos taurus) in individual pens with access to shade were adapted to feedlot conditions and then offered one of four rations containing 0, 4.4, 8.8 or 17.6 mg/kg of ergot alkaloids (84% dihydroergosine, 10% dihydroelymoclavine and 6% festuclavine), equivalent to ~0, 10, 20 or 40 g/kg ergot (sclerotia/sphacelia) in the rations. These rations were withdrawn at noon on the second day because of severe hyperthermia and almost complete feed refusal in ergot-fed steers. After recovery on ergot-free rations for 5 days, treatment groups were incrementally introduced, over a further 3–12 days, to rations containing 0, 1.1, 2.2 or 4.4 mg/kg of alkaloids (~0, 2.5, 5 or 10 g/kg ergot, respectively). Relative exposure to ergot was maintained, so that the zero- (control), low-, medium- and high-ergot groups remained so. Steers were individually fed ad libitum, and water was freely available. Steers in all ergot-fed groups had significantly elevated rectal temperatures at 0800–1000 hours, even when the temperature–humidity index was only moderate (~70), and displayed other signs of hyperthermia (increased respiration rate, mouth breathing, excessive salivation and urination), as the temperature–humidity index increased to 73–79 during the day. Plasma prolactin was significantly reduced in ergot-fed groups. Voluntary feed intakes (liveweight basis) of the ergot-fed groups were significantly reduced, averaging 94, 86 and 86%, respectively, of the feed intakes of the control group. Hair coats were rough. While the control steers grew from a mean initial liveweight of 275 kg to a suitable slaughter weight of 455 kg in 17 weeks (growth rate 1.45 kg/day), ergot-fed groups gained only 0.77–1.10 kg/day and took at least 5 weeks longer to reach the slaughter weight, despite removal of ergot at the same time as control steers were sent to slaughter. Sorghum ergot, even at low concentrations (1.1 mg alkaloids/kg feed) is severely detrimental to the performance of steers in the feedlot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drying regrowth native hardwoods to satisfactory moisture levels is a significant challenge for the processing industry. Dried quality is becoming increasingly important as sawn hardwood continues to move away from structural markets into appearance applications, but more difficult to achieve as the resource mix being processed becomes younger. An accurate, predictive drying model is a powerful tool in schedule development, decreasing the reliance on expensive, repetitive drying trials. This project updates the KilnSched drying model to allow the drying behaviour of regrowth blackbutt, jarrah, messmate, spotted gum and Victorian ash to be modeled more accurately. The effect of high temperature drying and humidity treatments on spotted gum were also investigated, as was the economics of various drying methods on spotted gum and blackbutt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:0016:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternaria leaf blotch and fruit spot caused by Alternaria spp. cause annual losses to the Australian apple industry. Control options are limited, mainly due to a lack of understanding of the disease cycle. Therefore, this study aimed to determine potential sources of Alternaria spp. inoculum in the orchard and examine their relative contribution throughout the production season. Leaf residue from the orchard floor, canopy leaves, twigs and buds were collected monthly from three apple orchards for two years and examined for the number of spores on their surface. In addition, the effects of climatic factors on spore production dynamics in each plant part were examined. Although all four plant parts tested contributed to the Alternaria inoculum in the orchard, significant higher numbers of spores were obtained from leaf residue than the other plant parts supporting the hypothesis that overwintering of Alternaria spp. occurred mainly in leaf residue and minimally on twigs and buds. The most significant period of spore production on leaf residue occurred from dormancy until bloom and on canopy leaves and twigs during the fruit growth stage. Temperature was the single most significant factor influencing the amount of Alternaria inoculum and rainfall and relative humidity showed strong associations with temperature influencing the spore production dynamics in Australian orchards. The practical implications of this study include the eradication of leaf residue from the orchard floor and sanitation of the canopy after harvest to remove residual spores from the trees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternaria leaf blotch and fruit spot of apple caused by Alternaria spp. cause annual losses to the Australian apple industry. Erratic control using protectant fungicides is often experienced and may be due to the lack of understanding of the timing of infection and epidemiology of the diseases. We found that Alternaria leaf blotch infection began about 20 days after bloom (DAB) and the highest disease incidence occurred from 70 to 110 DAB. Alternaria fruit spot infection occurred about 100 DAB in the orchard. Fruit inoculations in planta showed that there was no specific susceptible stage of fruit. Leaves and fruit in the lower canopy of trees showed higher levels of leaf blotch and fruit spot incidence than those in the upper canopy and the incidence of leaf blotch in shoot leaves was higher than in spur leaves. Temperature, relative humidity, and rainfall affected leaf blotch and fruit spot incidence. The gained knowledge on the timing of infection and development of disease may aid in the development of more effective disease management strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February-April) for the Pretoria site, summer (November-January) for the Zululand site and spring (August-October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed a suitable diet for mass rearing of Cryptolestes ferrugineus (Stephens) populations under laboratory conditions. Recently, this pest has developed strong level of resistance to phosphine in Australia, and therefore, a significant amount of research has been directed towards its management. In total, nineteen grain-based diets, containing rolled oats, various combinations of cracked grains and flours of wheat, sorghum, maize and barley were tested. Each diet contained a small proportion of wheat germ (4.5% w/w) and torula yeast (0.5% w/w). Experiments were conducted at fixed temperature and relative humidity regimes of 30 ± 2 °C and 70 ± 2%, respectively, and replicated three times. Adults (n = 40) of a laboratory strain of C. ferrugineus were introduced into each diet, removed after 14 days and total numbers of live adult progeny were recorded. The following diets resulted in highest live progeny production: barley flour (95%) (607.67 ± 11.21) = rolled oats (75%) + cracked sorghum (20%) (597.33 ± 33.79) ≥ wheat flour (47.5%) + barley flour (47.5%) (496.67 ± 52.93) > cracked sorghum (95%) (384.00 ± 60.66). The performance of these four diets was then tested with field-collected populations of C. ferrugineus and Cryptolestes pusillus (Schonherr). The diets based on rolled oats + cracked sorghum, wheat flour + barley flour, and barley flour alone consistently produced highest progeny numbers in field-collected populations of both species, with mean progeny numbers ranging from 359.9 to 478.5. The multiplication of C. pusillus was significantly higher than C. ferrugineus on all four diets. Our findings will help in mass rearing of healthy cultures of C. ferrugineus and C. pusillus that will greatly facilitate laboratory and field research and in particular, in developing management tactics for these species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.