929 resultados para Human skeleton -- Disorders


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/aims: Chronic infections such as those caused by Chlamydia pneumoniae and periodontopathic bacteria such as Porphyromonas gingivalis have been associated with atherosclerosis, possibly due to cross-reactivity of the immune response to bacterial GroEL with human heat shock protein (hHSP) 60. Methods: We examined the cross-reactivity of anti-GroEL and anti-P. gingivalis antibodies with hHSP60 in atherosclerosis patients and quantified a panel of six pathogens in atheromas. Results: After absorption of plasma samples with hHSP60, there were variable reductions in the levels of anti-GroEL and anti-P. gingivalis antibodies, suggesting that these antibodies cross-reacted with hHSP60. All of the artery specimens were positive for P. gingivalis. Fusobacterium nucleatum, Tannerella forsythia, C. pneumoniae, Helicobacter pylori, and Haemophilus influenzae were found in 84%, 48%, 28%, 4%, and 4% of arteries, respectively. The prevalence of the three periodontopathic microorganisms, P. gingivalis, F. nucleatum and T. forsythia, was significantly higher than that of the remaining three microorganisms. Conclusions: These results support the hypothesis that in some patients, cross-reactivity of the immune response to bacterial HSPs including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may be a possible mechanism for the association between atherosclerosis and periodontal infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sunscreen skin penetration and safety assessment should be considered together in order to ensure that in vitro cytotoxicity studies examine relevant doses of these organic chemical UV filters to which viable epidermal cells are realistically exposed. In this study, we sought to determine whether sufficient topically applied sunscreens penetrated into human viable epidermis to put the local keratinocyte cell populations at risk of toxicity. The penetration and retention of five commonly used sunscreen agents ( avobenzone, octinoxate, octocrylene, oxybenzone and padimate O) in human skin was evaluated after application in mineral oil to isolated human epidermal membranes. Sunscreen concentration - human keratinocyte culture response curves were then defined using changes in cell morphology and proliferation ( DNA synthesis using radiolabelled thymidine uptake studies) as evidence of sunscreens causing toxicity. Following 24 h of human epidermal exposure to sunscreens, detectable amounts of all sunscreens were present in the stratum corneum and viable epidermis, with epidermal penetration most evident with oxybenzone. The concentrations of each sunscreen found in human viable epidermis after topical application, adjusting for skin partitioning and binding effects, were at least 5-fold lower, based on levels detected in viable epidermal cells, than those appearing to cause toxicity in cultured human keratinocytes. It is concluded that the human viable epidermal levels of sunscreens are too low to cause any significant toxicity to the underlying human keratinocytes. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is evidence to suggest that plasma membrane Ca2+-ATPase (PMCA) isoforms are important mediators of mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184135 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha-Melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected REK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-species comparative genomics is a powerful strategy for identifying functional regulatory elements within noncoding DNA. In this paper, comparative analysis of human and mouse intronic sequences in the breast cancer susceptibility gene (BRCA1) revealed two evolutionarily conserved noncoding sequences (CNS) in intron 2, 5 kb downstream of the core BRCA1 promoter. The functionality of these elements was examined using homologous-recombination-based mutagenesis of reporter gene-tagged cosmids incorporating these regions and flanking sequences from the BRCA1 locus. This showed that CNS-1 and CNS-2 have differential transcriptional regulatory activity in epithelial cell lines. Mutation of CNS-1 significantly reduced reporter gene expression to 30% of control levels. Conversely mutation of CNS-2 increased expression to 200% of control levels. Regulation is at the level of transcription and shows promoter specificity. Both elements also specifically bind nuclear proteins in vitro. These studies demonstrate that the combination of comparative genomics and functional analysis is a successful strategy to identify novel regulatory elements and provide the first direct evidence that conserved noncoding sequences in BRCA1 regulate gene expression. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developmental- and tissue-specific expression of globin genes is mediated by a few key elements within the proximal promoter of each gene. DNA-binding assays previously identified NF-Y, GATA-1, C/EBP beta and C/EBP gamma as candidate regulators of beta-globin transcription via the CCAAT-box, a promoter element situated between CACC- and TATA-boxes. We have identified C/EBP delta as an additional beta-globin CCAAT-box binding protein. In reporter assays, we show that C/EBP delta can co-operate with EKLF, a CACC-box binding protein, to activate the beta-globin promoter, whereas C/EBP gamma inhibits the transcriptional activity of EKLF in this assay. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human neuronal protein 22 (hNP22) is a novel neuron-specific protein featuring numerous motifs previously described in cytoskeleton-associating and signaling proteins. Because previous studies have supported abnormalities in neuronal cytoarchitecture and/or development in the schizophrenia brain, we examined the expression of hNP22 in the anterior cingulate cortex, the hippocampus and the prefrontal cortex of schizophrenic and normal control postmortem brains using high-sensitive immunohistochemistry. Seven schizophrenic and seven age- and sex-matched control brains were examined. The ratio of hNP22-immunopositive cells/total cells was significantly reduced in layer V (p = .020) and layer VI (p = .022) of the anterior cingulate cortex of schizophrenic brain compared with controls. In contrast, there were no significant changes observed in the hippocampus and the prefrontal cortex. These results suggest that altered expression of hNP22 may be associated with modifications in neuronal cytoarchitecture leading to dysregulation of neural signal transduction in the anterior cingulate cortex of the schizophrenia brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are increasingly used in patients with diabetes, and small studies have suggested a beneficial effect on renal function, but their effects on. extracellular matrix (ECM) turnover are unknown. The aims of this study were to investigate the effects of the PPAR-gamma agonist pioglitazone on growth and matrix production in human cortical fibroblasts (CF). Cell growth and ECM production and turnover were measured in human CF in the presence and absence of 1 and 3 muM pioglitazone. Exposure of CF to pioglitazone caused an antiproliferative (P < 0.0001) and hypertrophic (P < 0.0001) effect; reduced type IV collagen secretion (P < 0.01), fibronectin secretion (P < 0.0001), and proline incorporation (P < 0.0001); decreased MMP-9 activity (P < 0.05); and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 secretion (P < 0.001 and P < 0.0001, respectively). These effects were independent of TGF-beta1. A reduction in ECM production was similarly observed when CF were exposed to a selective PPAR-gamma agonist (L-805645) in concentrations that caused no toxicity, confirming the antifibrotic effects of pioglitazone were mediated through a PPAR-gamma-dependent mechanism. Exposure of CF to high glucose conditions induced an increase in the expression of collagen IV (P < 0.05), which was reversed both in the presence of pioglitazone (1 and 3 muM) and by L-805645. In summary, exposure of human CIF to pioglitazone causes an antiproliferative effect and reduces ECM production through mechanisms that include reducing TIMP activity, independent of TGF-beta1. These studies suggest that the PPAR-gamma agonists may have a specific role in ameliorating the course of progressive tubulointerstitial fibrosis under both normoglycemic and hyperglycemic states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent House of Lords decision in Quintavalle v Human Fertilisation and Embryology Authority has raised difficult and complex issues regarding the extent to which embryo selection and reproductive technology can be used as a means of rectifying genetic disorders and treating critically ill children. This comment outlines the facts of Quintavalle and explores how the House of Lords approached the legal, ethical and policy issues that arose out of the Human Fertilisation and Embryology Authority's (UK) decision to allow reproductive and embryo technology to be used to produce a 'saviour sibling' whose tissue could be used to save the life of a critically ill child. Particular attention will be given to the implications of the decision in Quintavalle for Australian family and medical law and policy. As part of this focus, the comment explores the current Australian legislative and policy framework regarding the use of genetic and reproductive technology as a mechanism through which to assist critically ill siblings. It is argued that the present Australian framework would appear to impose significant limits on the medical uses of genetic technology and, in this context, would seem to reflect many of the principles that were articulated by the House of Lords in Quintavalle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that an important functional attribute of stem cells in vivo is their ability to sustain tissue regeneration, we set out to establish a simple and easy technique to assess this property from candidate populations of human keratinocyte stem cells in an in vivo setting. Keratinocytes were inoculated into devitalized rat tracheas and transplanted subcutaneously into SCID mice, and the epithelial lining regenerated characterized to establish the validity of this heterotypic model. Furthermore, the rate and quality of epidermal tissue reconstitution obtained from freshly isolated unfractionated vs. keratinocyte stem cell-enriched populations was tested as a function of (a) cell numbers inoculated; and (b) the inclusion of irradiated support keratinocytes and dermal cells. Rapid and sustained epidermal tissue regeneration from small numbers of freshly isolated human keratinocyte stem cells validates the utilization of this simple and reliable model system to assay for enrichment of epidermal tissue-reconstituting cells.