969 resultados para Historically accurate reconstructions
Resumo:
OBJECTIVES: The objective of this systematic review was to assess the 5-year survival rates and incidences of complications associated with ceramic abutments and to compare them with those of metal abutments. METHODS: An electronic Medline search complemented by manual searching was conducted to identify randomized-controlled clinical trials, and prospective and retrospective studies providing information on ceramic and metal abutments with a mean follow-up time of at least 3 years. Patients had to have been examined clinically at the follow-up visit. Assessment of the identified studies and data abstraction was performed independently by three reviewers. Failure rates were analyzed using standard and random-effects Poisson regression models to obtain summary estimates of 5-year survival proportions. RESULTS: Twenty-nine clinical and 22 laboratory studies were selected from an initial yield of 7136 titles and data were extracted. The estimated 5-year survival rate of ceramic abutments was 99.1% [95% confidence interval (CI): 93.8-99.9%] and 97.4% (95% CI: 96-98.3%) for metal abutments. The estimated cumulative incidence of technical complications after 5 years was 6.9% (95% CI: 3.5-13.4%) for ceramic abutments and 15.9% (95% CI: 11.6-21.5%) for metal abutments. Abutment screw loosening was the most frequent technical problem, occurring at an estimated cumulative incidence after 5 years of 5.1% (95% CI: 3.3-7.7%). All-ceramic crowns supported by ceramic abutments exhibited similar annual fracture rates as metal-ceramic crowns supported by metal abutments. The cumulative incidence of biological complications after 5 years was estimated at 5.2% (95% CI: 0.4-52%) for ceramic and 7.7% (95% CI: 4.7-12.5%) for metal abutments. Esthetic complications tended to be more frequent at metal abutments. A meta-analysis of the laboratory data was impossible due to the non-standardized test methods of the studies included. CONCLUSION: The 5-year survival rates estimated from annual failure rates appeared to be similar for ceramic and metal abutments. The information included in this review did not provide evidence for differences of the technical and biological outcomes of ceramic and metal abutments. However, the information for ceramic abutments was limited in the number of studies and abutments analyzed as well as the accrued follow-up time. Standardized methods for the analysis of abutment strength are needed.
Resumo:
There is no accepted way of measuring prothrombin time without time loss for patients undergoing major surgery who are at risk of intraoperative dilution and consumption coagulopathy due to bleeding and volume replacement with crystalloids or colloids. Decisions to transfuse fresh frozen plasma and procoagulatory drugs have to rely on clinical judgment in these situations. Point-of-care devices are considerably faster than the standard laboratory methods. In this study we assessed the accuracy of a Point-of-care (PoC) device measuring prothrombin time compared to the standard laboratory method. Patients undergoing major surgery and intensive care unit patients were included. PoC prothrombin time was measured by CoaguChek XS Plus (Roche Diagnostics, Switzerland). PoC and reference tests were performed independently and interpreted under blinded conditions. Using a cut-off prothrombin time of 50%, we calculated diagnostic accuracy measures, plotted a receiver operating characteristic (ROC) curve and tested for equivalence between the two methods. PoC sensitivity and specificity were 95% (95% CI 77%, 100%) and 95% (95% CI 91%, 98%) respectively. The negative likelihood ratio was 0.05 (95% CI 0.01, 0.32). The positive likelihood ratio was 19.57 (95% CI 10.62, 36.06). The area under the ROC curve was 0.988. Equivalence between the two methods was confirmed. CoaguChek XS Plus is a rapid and highly accurate test compared with the reference test. These findings suggest that PoC testing will be useful for monitoring intraoperative prothrombin time when coagulopathy is suspected. It could lead to a more rational use of expensive and limited blood bank resources.
Resumo:
OBJECTIVES: To assess retrospectively the cumulative costs for the long-term oral rehabilitation of patients with birth defects affecting the development of teeth. METHODS: Patients with birth defects who had received fixed reconstructions on teeth and/or implants > or =5 years ago were asked to participate in a comprehensive clinical, radiographic and economic evaluation. RESULTS: From the 45 patients included, 18 were cases with a cleft lip and palate, five had amelogenesis/dentinogenesis imperfecta and 22 were cases with hypodontia/oligodontia. The initial costs for the first oral rehabilitation (before the age of 20) had been covered by the Swiss Insurance for Disability. The costs for the initial rehabilitation of the 45 cases amounted to 407,584 CHF (39% for laboratory fees). Linear regression analyses for the initial treatment costs per replaced tooth revealed the formula 731 CHF+(811 CHF x units) on teeth and 3369 CHF+(1183 CHF x units) for reconstructions on implants (P<.001). Fifty-eight percent of the patients with tooth-supported reconstructions remained free from failures/complications (median observation 15.7 years). Forty-seven percent of the patients with implant-supported reconstructions remained free from failures/complications (median observation 8 years). The long-term cumulative treatment costs for implant cases, however, were not statistically significantly different compared with cases reconstructed with tooth-supported fixed reconstructions. Twenty-seven percent of the initial treatment costs were needed to cover supportive periodontal therapy as well as the treatment of technical/biological complications and failures. CONCLUSION: Insurance companies should accept to cover implant-supported reconstructions because there is no need to prepare healthy teeth, fewer tooth units need to be replaced and the cumulative long-term costs seem to be similar compared with cases restored on teeth.
Resumo:
[1] We present quantitative autumn, summer and annual precipitation and summer temperature reconstructions from proglacial annually laminated Lake Silvaplana, eastern Swiss Alps back to AD 1580. We used X-ray diffraction peak intensity ratios of minerals in the sediment layers (quartz qz, plagioclase pl, amphibole am, mica mi) that are diagnostic for different source areas and hydro-meteorological transport processes in the catchment. XRD data were calibrated with meteorological data (AD 1800/1864–1950) and revealed significant correlations: mi/pl with SON precipitation (r = 0.56, p < 0.05) and MJJAS precipitation (r = 0.66, p < 0.01); qz/mi with MJJAS temperature (r = −0.72, p < 0.01)and qz/am with annual precipitation (r = −0.54, p < 0.05). Geological catchment settings and hydro-meteorological processes provide deterministic explanations for the correlations. Our summer temperature reconstruction reproduces the typical features of past climate variability known from independent data sets. The precipitation reconstructions show a LIA climate moister than today. Exceptionally wet periods in our reconstruction coincide with regional glacier advances.
Resumo:
High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments