977 resultados para High-resolution continuum source flame atomic absorption spectrometry
Resumo:
During ODP Leg 107, the basement of the Tyrrhenian Sea was drilled at Site 650, located in the Marsili basin, and at Sites 651 and 655, both located in the Vavilov basin. In addition, a lava flow was drilled at Site 654 on the Sardinia rifted margin. Mineral and whole rock major and trace element chemistry, including rare earth element (REE) and Sr and Nd isotopic ratios, were determined in samples of these rocks. Site 654 lava was sampled within uppermost Pliocene postrift sediments. This lava is a basaltic andesite of intraplate affinity, and is analogous to some Plio-Pleistocene tholeiitic lavas from Sardinia. Site 650 basalts, drilled beneath 1.7-1.9-Ma-old basal sediment, are strongly altered and vesicular suggesting a rapid subsidence of the Marsili basin. Based on incompatible trace elements, these basalts show calc-alkaline affinity like some products of the Marsili Seamount and the Eolian arc. The basement of the two sites drilled within Vavilov basin shows contrasting petrologies. Site 655, located along the Gortani ridge in the western part of the basin, drilled a 116-m-thick sequence of basalt flows beneath 3.4-3.6-Ma-old basal sediments. These basalts are chemically relatively homogeneous and show affinity to transitional MORB. Four units consisting of slightly differentiated basaltic lavas, have been identified. Site 655 basalts are geochemically similar to the high Ti lavas from DSDP Leg 42, Site 373 (Vavilov Basin). The basement at Site 651, overlain by 40 m of metalliferous dolostone covered by fossiliferous sediments with an age of 2 Ma, consists of two basalt units separated by a dolerite-albitite intrusive body; serpentinized harzburgites were drilled for 30 m at the base of the hole. The two basalt units of Site 651 are distinct petrochemically, though both show incompatible elements affinity with high-K calc-alkaline/calc-alkaline magmas from Eolian arc. The cpx chemistry and high K/Na ratio of the lower unit lavas suggest a weak alkaline tendency of potassic lineage. Leg 107 basement rock data, together with data from DSDP Site 373 and from dredged samples, indicate that the deepest basins of the central Tyrrhenian Sea are underlain by a complex back-arc basin crust produced by magmas with incompatible element affinities to transitional MORB (Site 655 and DSDP Site 373), and to calc-alkaline and high-K calc-alkaline converging plate margin basalts (Sites 650 and 651). This petrogenetic complexity is in accordance with the back-arc setting of the Vavilov and Marsili basins. Other back-arc basin basalts, particularly those from ensialic basins such as the Bransfield Strait (Antarctica), show a comparable petrogenetic complexity (cf., Sounders and Tarney, 1984).
Resumo:
We found high levels of contaminants, in particular organochlorines, in eggs of the ivory gull Pagophila eburnea, a high Arctic seabird species threatened by climate change and contaminants. An 80% decline in the ivory gull breeding population in the Canadian Arctic the last two decades has been documented. Because of the dependence of the ivory gull on sea ice and its high trophic position, suggested environmental threats are climate change and contaminants. The present study investigated contaminant levels (organochlorines, brominated flame retardants, perfluorinated alkyl substances, and mercury) in ivory gull eggs from four colonies in the Norwegian Svalbard) and Russian Arctic (Franz Josef Land and Severnaya Zemlya). The contaminant levels presented here are among the highest reported in Arctic seabird species, and we identify this as an important stressor in a species already at risk due to environmental change.
Resumo:
Sedimentation and ore formation were studied in sediments from nine stations located along the 24°W profile in the Brazil Basin of the Atlantic Ocean. Bottom sediments are represented by mio- and hemipelagic muds, which are variably enriched in hydrothermal iron and manganese oxyhydroxides. As compared to bottom sediments from other basins of the Atlantic Ocean, the sediments in study are marked by extremely high manganese contents (up to 1.33%) and maximal enrichment in Ce. It was shown that the positive Ce anomaly is related to REE accumulation on iron oxyhydroxides. Influence of hydrothermal source leads to decrease of Ce anomaly and LREE/HREE ratio. In reduced sediments preservation of positive Ce anomaly and/or its disappearance was observed after iron and manganese reduction. REE contents were determined for the first time in the Ethmodiscus oozes of the Brazil Basin. Ore deposits of the Brazil Basin are represented by ferromanganese crusts and ferromanganese nodules. Judging from contents of iron, manganese, REE, and other trace elements, these formations are ascribed to sedimentation (hydrogenic) deposits. They are characterized by a notable positive Ce anomaly in the REE pattern. Extremely high Ce content (up to 96% of total REE) was discovered for the first time in the buried nodules (Mn/Fe = 0.88).
Resumo:
During Ocean Drilling Program Leg 126, six sites were cored in a young backarc rift basin and its flanks (rift onset 1.1-3.56 Ma) and in the forearc basin of the Izu-Bonin Arc. In the backarc area, strata are younger than about 4.5 Ma, whereas in the forearc, ages are about 0-31 Ma in sections punctuated by important Miocene unconformities. Bulk chemical analyses of volcaniclastic turbidite sands and sandstones, derived directly from the arc, were obtained from 271 atomic absorption analyses (major elements), 253 XRF analyses (trace elements) and 16 ICP-MS analyses (trace and rare-earth elements). Of the 271 samples, 78 come from the backarc area and the remainder from the forearc. The sands and sandstones reflect the igneous compositions of their sources. Most are formed of materials derived from subalkaline, low-K andesites, and dacites, although compositions range from basalt to rhyolite. Basic and acid andesites are predominant in Oligocene rocks; in contrast, Pliocene-Pleistocene sediments were derived from acid andesitic to rhyolitic sources. The oldest sandstones, estimated to have an age of about 31 Ma, were derived from an arc tholeiitic, not boninitic, source. The 26-31 Ma sandstones furthest to the north, at Sites 787 and 792, have higher relative concentrations of Ti, Zr, and Y than do those at southern Site 793. Data from younger samples indicate that, for more than 30 m.y., the average composition of volcaniclastic sediments and volcanism near Aoga Shima was more basic than to the south, near Sumisu Jima. Using the sandstones as igneous proxies, we conclude that magmas erupted along the arc have become more depleted in light-rare-earth elements (LREE) with time. There was a major change in rare-earth-element (REE) concentrations in the late Oligocene, from essentially flat patterns (normalized La/Yb about 1-1.5) to LREE-depleted patterns (normalized La/Yb about 0.5). At the same time, Zr/Y ratios decreased from about 2-4 to about 1.5-2.5. These changes may reflect a shift in provenance, or changes in the composition of the mantle wedge beneath the arc. In the backarc area, lithic clasts and glass shards of rift-facies basalt are present in sediments as old as 2.35-3.15 Ma. Two samples of mafic sand from the backarc basin have flat REE patterns (normalized La/Yb about 1.0), like some of the <1-Ma rift lavas and unlike pre-rift sand and sandstone samples. These possibly represent the local effects of sedimentary mixing of detritus from arc and backarc eruptions because no evidence from the arc itself exists to suggest a recent change in the REE content of magmas.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.
Resumo:
Based on a high-resolution analysis of the diatom signal and biogenic bulk components at site GeoB3606-1 (25°S, off Namibia), we describe rapid palaeoceanographic changes in the Benguela Upwelling System (BUS) from early MIS 3 through to the early Holocene (55 000 to 7 000 14C yr BP). Coastal upwelling strongly varied at 25°S from MIS 3 through to MIS 2. The abrupt decrease in the accumulation rate of biogenic silica and diatoms from MIS 3 into MIS 2 records rapid oceanographic changes in the BUS off Namibia. During MIS 3, leakage of excess H4SiO4 acid from the Southern Ocean into low-latitude surface waters, as indicated by the occurrence of Antarctic diatoms, enhanced the production of spores of Chaetoceros at the expense of calcareous phytoplankton. Furthermore, shallower Antarctic Intermediate Water (AAIW) would have enriched the thermocline off Namibia with silicate transported from the Southern Ocean. The strong decrease of the siliceous signal throughout MIS 2 represents a decrease in the nutrient input to the BUS, even though the diatom assemblage is still dominated by spores of the upwelling-associated diatom genus Chaetoceros. Depletion of silicate in the thermocline from the onset of MIS 2 through to the early Holocene reflects the shutdown of AAIW injection from the Southern Ocean into the BUS, causing upwelled waters to become reduced in silicate, hence less favourable for diatom production. The deglaciation and early Holocene are characterised by the replacement of the upwelling-associated flora by a non-upwelling-related diatom community, reflecting weakened upwelling, retraction of the seaward extension of the chlorophyll filament off Lüderitz, and dominance of warmer waters.
Resumo:
This report presents the results of a study of the stable isotopic and chemical composition of secondary carbonate minerals precipitated within basalts at Ocean Drilling Program Sites 707 and 715. At Site 715, the secondary carbonates are all composed of calcite and display a narrow range of carbon and oxygen stable isotope ratios, with values ranging from -2.75 per mil to 1.95 per mil PDB and -0.27 per mil to 2.86 per mil PDB, respectively. Strontium, iron, and manganese values of the samples are generally low. The geochemistry of Site 715 samples indicates that they precipitated from seawater-domi- nated fluids, at low temperatures, as is typical of secondary carbonates from most Deep Sea Drilling Project sites. In contrast, at Site 707, aragonite, siderite, and manganese-rich calcite occur as secondary carbonates in addition to calcite. The carbon isotopes of the Site 707 carbonates of all rock types are depleted in 13C. Values range from -2.79 per mil to -16.43 per mil PDB. Oxygen isotope values do not show a wide variation, ranging from -1.78 per mil to 1.17 per mil. The strontium contents of the samples range from 5200 to 8100 ppm for aragonites, and from 145 to 862 ppm for calcites. Iron and manganese contents are high in calcites and siderites and low in aragonites. Site 707 carbonates precipitated at low temperatures in a fairly closed system, in which basalt-seawater interaction has greatly influenced the chemistry of the pore fluids. The reactions occurring within the system before and in conjunction with secondary carbonate precipita- tion include oxidation of isotopically light methane, derived from fluids circulating within the basalts, and reduction of substantial amounts of iron and manganese oxides from the basalts.
Resumo:
Narrow-spaced oxygen and carbon stable isotope records of the planktonic foraminifer Globigerinoides ruber (white) were obtained at Ocean Drilling Program Leg 184 Site 1144 to establish a first record of high-resolution Pleistocene monsoon variability on orbital to centennial timescales in the northern South China Sea. The new records extend from the Holocene back to marine isotope Stage (MIS) 34 (1.1 Ma). Sedimentation rates average 0.56 m/k.y. for the upper Matuyama and Brunhes Chrons and increase to 1.8 m/k.y. over the last 100 k.y. Stable isotope records thus reach an average time resolution of 270-500 yr for the last 375 k.y. and 570 yr further back to 700 ka. On the other hand, major stratigraphic gaps were identified for peak warm Stages 5.5, 7.5 (down to 8.4), 11.3, and 15.5. These gaps probably resulted from short-lasting events of contour current erosion induced by short-term enhanced incursions of Upper Pacific Deep Water near the end of glacial terminations. A further major hiatus extends from MIS 34 to MIS 73(?). The long-term variations in monsoon climate were largely dominated by the 100-k.y. eccentricity cycle. Planktonic delta13C values culminated near 30, 480, and 1035 ka and reflect an overlying 450-k.y. eccentricity cycle of minimum nutrient concentrations in the surface ocean. Superimposed on the orbital variations, millennial-scale cycles were prominent throughout the last 700 k.y., mainly controlled by short-term changes in monsoon-driven precipitation and freshwater input from mainland China. During the last 110 k.y. these short-lasting oscillations closely match the record of 1500-yr Dansgaard-Oeschger climate cycles in the Greenland ice core record.
Resumo:
Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.
Resumo:
The distribution of barite in sediments from D.S.D.P. sites 424 and 424A at the Galapagos hydrothermal mounds field is determined and the process of its formation is deduced. Barite in these deposits is associated with calcareous sediments and is completely absent from the hydrothermal material (manganese crusts and nontronite). Its concentrations tend to increase in the deeper sediments. Since manganese crusts contain significant amounts of Ba, a lack of barite in them is probably due to low concentrations of [SO4]2 in the sediment-seawater interface where they form. The formation of barite occurs within buried sediments, the interstitial waters of which are saturated with [SO4]2. The most probable source of [SO4]2- is the oxidation of H2S which is released from the hydrothermal fluids percolating upwards through the sediments. Although nontronite is formed within buried sediments the environmental conditions occurring during its formation (reducing) prevent barite formation. The association of barite with calcareous sediments is due to the release of Ba by calcareous microorganisms and/or to high concentrations of Ca in the pore waters which maintain a high pH and hence [SO4]2- is stable.
Resumo:
The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Southern Ocean Intermediate Waters (SOIW), such as Antarctic Intermediate Water and Subantarctic Mode Water, are thought to have acted as active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in SOIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from Site GeoB12615-4 in the western Indian Ocean. Our data suggest that SOIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial SOIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.
Resumo:
Studies of the late Miocene-early Pliocene biogenic bloom typically have focused on high-productivity areas in the Indian and Pacific Oceans in order to achieve high resolution samples. Thus there is a paucity of information concerning whether the Atlantic Ocean, in general or low-productivity regions in all three basins experienced this bloom. This study measured the phosphorus mass accumulation rate (PMAR). in five cores from low-productivity regions of the Atlantic and Indian Oceans. All cores exhibit a peak in productivity 4-5.5 Ma, coincident with the Indo-Pacific bloom. This suggests that nutrients were not shifted away from low-productivity regions nor out of the Atlantic Ocean. Instead, it appears that the bloom was caused by an overall increase in nutrient flux into the world oceans. Four of the cores record the bloom's PMAR peak as bimodal, indicating a pulsed increase in phosphorus to the oceans. This suggests that there may have been multiple causes of the biogenic bloom.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.
Resumo:
Thirty-five samples from Hole 778A were prepared for X-ray diffraction (XRD) mineralogical analyses and for chemical analyses of major and trace elements. Most of the selected samples were silt- and sand-sized sedimentary serpentinites or microbreccias except for a soft clast of mafic rock, a hard clast of massive serpentinized peridotite, and a pebble of consolidated, undeformed serpentine microbreccia that contained planktonic foraminifers. Both mineralogical and geochemical analyses allow discrimination of three groups among the analyzed samples. These groups correspond to three stratigraphic intervals present along the drilled section. Group A contains the upper samples (lithologic Unit I). These consist of poorly consolidated serpentine muds carrying hard-rock clasts (serpentinized peridotites, metabasalts). They are characterized by the following mineralogical assemblage: serpentine, Fe-oxides and hydroxides, aragonite, and halite. They exhibit variable SiO2, MgO contents, but are characterized by a SiO2/MgO ratio near 1. CaO content is high in relation to development of aragonite. Al2O3 content is low. Relatively high K2O, Na2O, and Sr contents are present, presumably in relation to interactions with seawater. Group B (30-77 mbsf) contains samples exhibiting very homogeneous chemical and mineralogical compositions. They consist of serpentinite microbreccias exhibiting frequent shear structures. Hard-rock clasts are also present (serpentinized peridotites, metabasalts, one possible chert fragment). The mineralogy of the Group B samples is characterized by the presence of serpentine and authigenic minerals: hydroxycarbonates and hydrogrossular. Calcite and chlorite are also present, but all the samples lack aragonite. Their chemical compositions are remarkably similar to compositions of their parent rocks. Group C contains silt- and sand-sized serpentine and serpentine microbreccias, which are locally rich in red clasts, probably strongly altered (oxidized?) mafic fragments. Intervals having clasts of more diverse origin than those higher in the section were recovered. Clast lithology includes serpentinized peridotites, metabasalts, metavolcaniclastite, meta-olivine gabbro, and amphibolite sandstone. Mineralogy and geochemistry reflect these compositions. Serpentine content of the samples is less than in previous groups. Correlatively, sepiolite, palygorskite, and chlorite-smectite are mineral phases present in the analyzed samples. Accessory igneous minerals (amphiboles, pyroxenes, hematite) also were found. The chemical compositions of most of Group C samples differ from that of massive serpentinized peridotites. The main differences are (1) higher SiO2, CaO, TiO2 and Al2O3 contents, (2) a SiO2/MgO ratio greater than 1, and (3) a negative correlation between Al2O3, and MgO, Cr, and Ni. These characteristics suggest new constraints relative to the flow structure of the flank of Conical Seamount.