953 resultados para Heminested RT-PCR
Resumo:
第一部分 利用减法杂交和RACEs从水稻中克隆了一个编码含有脯氨酸和苏氨酸丰富结构域多肽的cDNA,其相应的基因被命名为RA68。RA68由3个外显子和2个内含子组成,编码的蛋白由219个氨基酸残基组成。该蛋白由一个21个氨基酸残基组成的信号肽,一个亲水性的N-端结构域和一个疏水性的C-端结构域组成。 N端结构域是一段嵌合PTPTSYG motif的富含脯氨酸和苏氨酸的序列。 Southern杂交和序列分析结果表明RA68在水稻基因组中以单拷贝存在,定位于第2号染色体。Northern杂交结果表明RA68在幼芽和花中表达量较高,在根和叶中不表达。原位杂交分析结果表明:在幼苗期RA68 主要在幼芽胚芽鞘的内外层细胞和幼叶原基的表层细胞中表达;转入生殖生长期后,在花序分生组织、枝梗原基顶端、花器官原基、大孢子囊和花粉粒中表达。用GFP作报告基因,用洋葱表皮细胞进行的瞬间表达测试结果显示RA68蛋白定位于细胞核中。转反义RA68水稻植株抽穗期比对照野生型延迟30天左右。这些结果表明RA68可能是水稻花分生组织特征基因,在成花转变过程中起作用。 第二部分 通过RACE和RT-PCR方法分离了水稻OsUBP1基因,其推测编码蛋白含有UBP结构域(Cys Box和His Box)和TopⅥA结构域。RT-PCR分析结果表明OsUBP1在转录过程中通过可变剪接产生多个不同的转录本,这些转录本在叶、根、颖花和幼芽中存在着时空调节表达模式,每种组织中的转录本是不一样的。这些转录本内含子剪切位点除了经典的GT-AG外,还有GC-AG、CT-AC、TT-GA、GT-GA和CT-GA。由于发生了GC-AG的可变剪切产生了OsUBP1的重要功能结构域Cys Box。水稻OsUBP1基因和OsSPO11-1基因位于11号染色体的同一基因座位上。原位杂交分析表明,在花中OsUBP1 mRNA 主要在药壁绒毡层、花粉粒、大孢子囊和颖花底部维管束中表达。转反义OsUBP1植株大多不能正常结实,这说明OsUBP1可能参与水稻的育性调节。 关键词
Resumo:
青蒿 (Artemisia annua) 是目前唯一用来生产抗疟药剂青蒿素的一种药用植物,由于青蒿植株中青蒿素的含量过低,使得青蒿素的生产不能满足市场的需要,提高青蒿植株中青蒿素的含量显得尤为重要,本论文围绕着调控青蒿素的生物合成作出了以下一些研究: 一、紫穗槐二烯合酶基因启动子的克隆 紫穗槐二烯合酶是参与青蒿素生物合成的一个关键酶,以法呢基焦磷酸为底物,催化形成青蒿素分子所具有的杜松烯环状结构, 此酶被认为是青蒿素分支途径中的第一个关键限速酶,因此它的表达水平高低关系着流向青蒿素生物合成的碳流量。为了了解紫穗槐二烯合酶的表达模式,用Tail-PCR的方法我们从青蒿高产株系001中克隆得到紫穗槐二烯合酶基因的两个启动子,分别命名为AMSP1与AMSP2,序列比较分析可看出两启动子有三处大的差异片段,由此推测紫穗槐二烯合酶基因在青蒿基因组中可能是一个多拷贝形式存在,Southern杂交验证了这一点,结果表明,紫穗槐二烯合酶基因在青蒿基因组中至少存在三个copy;利用PLACE数据库对克隆的启动子的顺式作用元件进行分析,发现其中有光、茉莉酸甲酯等调控元件。5'RACE分析确定了紫穗槐二烯合酶基因的转录起始位点位于翻译起始位点上游44bp处。通过PCR的方法,我们对启动子AMSP2进行5′端缺失,缺失的5个启动子片段克隆进报告基因GUS的上游,以进行下一步启动子的特性分析。 二、紫穗槐二烯合酶的表达特性分析 RT-PCR半定量分析表明:光正调控于紫穗槐二烯合酶的转录表达,黑暗培养条件下,青蒿植株中紫穗槐二烯合酶的转录水平较低,一旦进行光照培养,紫穗槐二烯合酶的转录水平显著上升;茉莉酸甲酯对青蒿植株中紫穗槐二烯合酶的表达调控具有光依赖性,在连续黑暗条件下,茉莉酸甲酯对紫穗槐二烯合酶的转录水平并无影响,而在正常光照与黑暗循环培养条件下,茉莉酸甲酯明显诱导了青蒿植株中紫穗槐二烯合酶的转录表达。鉴于在正常的培养条件下,茉莉酸甲酯正调控于紫穗槐二烯合酶的转录表达,我们研究了茉莉酸甲酯对青蒿植株中青蒿素生物合成的影响,结果表明,茉莉酸甲酯并未促进青蒿素的生物合成,却诱导了青蒿素生物合成的前体青蒿酸的生物合成。 三、真空介导农杆菌转化青蒿植株瞬时表达系统的建立 探讨了真空强度、青蒿苗龄、农杆菌的浓度、共培养方式、共培养时间以及光对青蒿植株瞬时表达的影响,结果表明真空强度70-80mbar、30天的青蒿苗龄以及侵染农杆菌浓度OD600为2.0时有利于青蒿植株的瞬时表达;液体共培养极大地抑制了外源基因在青蒿植株的瞬时表达,固体共培养与滤纸共培养适合于青蒿植株的瞬时表达系统,二者之间无明显差异;共培养时间也是影响基因瞬时表达的关键因素,结果表明,3天或4天较2天共培养有利于外源基因在青蒿植株的瞬时表达;光对青蒿植株的瞬时表达有极大地抑制作用,而黑暗条件适合于青蒿植株的瞬时表达;此系统可用于不同基因型的青蒿植株。 四、青蒿过氧化物酶基因的克隆及功能分析 利用RACE方法,从青蒿高产株系001中克隆了一个第三大类植物过氧化物酶的cDNA。克隆的青蒿过氧化物酶氨基酸序列与白羽扇豆、辣根菜、小麦、烟草、蕃茄的过氧化物酶的同源性分别为42.0%、36.2%、38.9%、33.6%和32.8%。青蒿过氧化物酶的编码区被克隆进原核表达载体PET-30a,并在大肠杆菌BL21(DE3)pLysS中诱导表达,过量表达产物主要以包涵体形式存在,但也有相当一部分可溶性蛋白出现。表达的蛋白具有明显催化抗坏血酸、愈创木酚的过氧化物酶活性,催化愈创木酚活性大约是催化抗坏血酸的1.8倍。氨基酸同源性分析与过氧化反应表明克隆的过氧化物酶属于植物第三大类过氧化物酶。青蒿过氧化物酶间接促进了青蒿细胞提取液中青蒿酸向青蒿素的生物转化,但不能直接以青蒿酸作为催化底物。 五、外源赤霉素处理与开花对青蒿素、青蒿酸生物合成的影响 研究结果发现在青蒿的营养生长期喷施外源赤霉素明显促进了青蒿素的生物合成,同时青蒿酸含量呈下降趋势;从营养期至生殖期,青蒿酸的含量逐渐下降,至开化前期青蒿酸含量下降到最低,从开化前期至开花后期,青蒿酸的含量无多大变化,随着青蒿的发育,从营养生长期至开花期,青蒿素的含量呈上升趋势,至开化盛期时青蒿素含量达到最高。外源赤霉素处理与开花打破了青蒿素生物合成的瓶颈,诱导了青蒿酸向青蒿素的生物转化。
Resumo:
植物络合素(phytochelatins,PCs)是含有γ-Glu-Cys重复结构的小分子多肽,其结构通式为:(γ-Glu-Cys)n-Gly(n=2-11)。植物络合素(PCs)由植物络合素合酶(PCS)催化谷胱甘肽(GSH)聚合而成,能够络合重金属离子而具有解毒功能,这是植物解毒重金属胁迫的重要机制之一。本文克隆了来源于重金属抗性植物绊根草(Cynodon dactylon cv Goldensun)的植物络合素合酶基因,通过基因工程手段使其在烟草中过量表达,得到了一些有望用于植物修复(phytoremediation)的工程植株。同时,在水稻(Oryza sativa)种子中利用RNAi技术抑制植物络合素合酶基因的表达,以降低重金属离子在人类最重要的粮食作物水稻的籽粒中的积累。 1. 通过RACE(Rapid Amplification of cDNA Ends)方法从抗性植物绊根草中克隆了植物络合素合酶基因CdPCS1,其1515 bp的读码框编码一个含505个氨基酸的蛋白质,蛋白质序列分析表明它具有植物络合素合酶的结构特征,同时还具有磷酸化位点和亮氨酸拉链结构。 2. CdPCS1基因可以互补对铜和镉离子敏感的酵母突变株ABDE-1(cup1Δ)中缺失的金属硫蛋白基因CUP1的功能,也可以互补对砷离子敏感的酵母突变体FD236-6A(acr-3Δ)中的离子外排载体基因ARC3的缺失。 3. 将CdPCS1转入烟草,共获得过表达CdPCS1的烟草44个株系,其中融合GFP的株系16个。对T0代的转基因植株的PCs含量以及重金属抗性和吸收能力进行了分析,其中抗性实验表明,在300μmol/L 的Cd2+离子胁迫11天之后,野生型植株的叶片出现斑点状坏死,而两个转基因烟草株系S6和K49的植株没有出现受伤害症状。在100μmol/L的CdSO4处理一周后,转基因植株中的PCs含量比对照有不同程度的提高,最多提高了2.88倍。当用300μmol/L Cd2+处理9天再用600μmol/L Cd2+处理2天后,Cd的积累量比野生型植株增加了2倍多;用50μmol/L As3+处理7天再用100μmol/L As3+处理2天后,转基因植株对As的积累量最多增加了3倍多。说明转入绊根草PC合酶基因的烟草增加了植物络合素的合成,并由此增加了对镉离子的抗性以及对镉离子和砷离子的积累。 4. 对转基因烟草中的CdPCS1进行了亚细胞定位研究。在激光共聚焦显微镜和荧光显微镜下分别用转基因烟草叶片组织和叶肉细胞原生质体观察融合GFP的CdPCS1,结果表明融合蛋白定位于细胞核中。 5. .利用RNAi技术抑制水稻种子中植物络合素合酶基因的表达,共获得39个转基因株系。其中35个株系为种子特异性ZMM1启动子驱动OsPCS1基因的RNAi,其余4个株系由组成型的Ubiquitin启动子驱动。RT-PCR的分析结果表明:一个由ZMM1启动子驱动的RNAi转基因水稻株系的种子中,OsPCS1的mRNA水平比对照中的下降了一半。
Resumo:
水母雪莲(Saussurea medusa Maxim)为名贵珍稀中药材,其主要药用成分为类黄酮,尤其是3-脱氧类黄酮。目前关于雪莲的研究主要集中在采用细胞培养生产类黄酮等方面,但对于雪莲类黄酮生物合成的分子机制了解甚少,极大限制了这一珍贵资源的利用。本研究采用水母雪莲红色系愈伤组织及悬浮细胞为材料,构建cDNA文库,从中克隆水母雪莲类黄酮次生代谢中的相关基因并对这些基因进行了深入的生物信息学分析、转基因研究初步确定其功能,以期了解雪莲类黄酮次生代谢的分子机制,为提高类黄酮的合成奠定基础。主要结果如下: 1. 成功地构建了水母雪莲红色系愈伤组织与悬浮细胞cDNA文库,原始文库滴度达到4×106pfu/ml,扩增文库滴度接近1011 pfu/ml,重组率达98%。PCR检测插入片段,均在0.5kb到3kb之间,1kb以上占62%。从文库中检测到了chs、dfr及Myb转录因子SmP,文库覆盖度达到要求且为PCR筛选文库提供了可能。 2. 采用部分简并引物,通过RT-PCR克隆了水母雪莲查尔酮异构酶基因Smchi特异探针,并根据这一探针序列设计特异引物,采用TD-PCR法筛选cDNA文库,获得Smchi cDNA序列,全长831bp,编码一个232氨基酸残基的蛋白。根据cDNA序列克隆了Smchi DNA序列,结果表明Smchi基因无内含子。Smchi cDNA序列与翠菊chi基因高度同源,ORF区域同源性高达84%,但推测氨基酸序列则只有79.3%。Smchi mRNA具有复杂的二级结构。SmCHI具有典型的Chalcone结构域,其二级结构与苜蓿CHI蛋白十分相似,7个α-螺旋与8个延伸链由随机结构联系起来。但其活性中心的第三个关键氨基酸残基N115为M115所取代,这一取代可能导致该蛋白无生物活性,也可能使它具有一般CHI不同的功能。构建Smchi正义、反义真核表达载体,通过农杆菌介导导入烟草,获得转正义、反义Smchi基因的烟草。转基因烟草花色未改变,但叶片总黄酮发生了显著的变化,50%转正义基因烟草总黄酮含量显著提高,最高比对照提高6倍,70%转反义基因烟草总黄酮含量显著下降,最多达85.1%,初步证明Smchi具有功能,并能有效调控烟草类黄酮次生代谢。因此,SmCHI可能是不同于已知CHI的一类新的CHI蛋白,它催化的反应可能与花色素合成无关,其反应机制也可能有所不同。 3. 伴随Smchi的克隆获得了一个黄烷酮3-羟化酶类似基因Smf3h的cDNA,全长1334bp,编码一个343aa的蛋白。根据这一cDNA序列克隆了Smf3h DNA序列,全长1630bp,结果表明该基因由4个外显子和3个内含子组成。Smf3h mRNA具有十分复杂的二级结构。 推测蛋白氨基酸同源性分析表明,SmF3H属于2OG-FeII_Oxy家族,与同一家族的的颠茄H6H的同源性为45%,与拟南芥F3H的同源性为40%,但对SmF3H、典型F3H及典型H6H推测蛋白二级结构、活性中心关键氨基酸残基的位置与相对距离、软件进行功能预测分析,发现SmF3H与F3H更相似。构建Smf3h的正义与反义真核表达载体,通过农杆菌介导导入烟草,但只获得一批转正义基因的烟草,反义基因导致烟草不能再生而未获得转反义基因烟草。转基因烟草花色未改变,叶片总黄酮也与对照相似,初步确认Smf3h与烟草类黄酮生物合成无关,而是一个既不属于f3h也不属于h6h的功能未确定的新基因。 4. 采用与克隆Smchi基因相似的方法,从cDNA文库中克隆了SmP基因cDNA,全长969bp,编码一个256 aa的蛋白质。根据cDNA序列克隆了SmP基因的DNA序列,结果表明,SmP基因无内含子。SmP基因cDNA 一级结构及mRNA二级结构预测分析表明,该基因A+T含量很高(63%),所形成二级结构以A-T配对为主,其稳定性可能较差。SmP推测蛋白序列具有R2R3-Myb转录因子的典型特征,在N-端具有两个Myb DNA-binding Domain,其二级结构与鸡Myb转录因子1A5J十分相似,与其他基因如水稻OsMYB、番茄ThMYB的同源区域主要集中在这一结构域,分别为71.3%和70.8%;C-端富含丝氨酸,与烟草NtMYB、葡萄VlMYB等类黄酮调控因子相似,都呈寡聚体分布,并具有相同的保守磷酸化位点S170与S206。构建SmP基因真核表达载体,通过农杆菌介导导入烟草,获得大量转基因烟草。转基因烟草花色未发生改变,但51%的转基因烟草叶片总黄酮含量都显著提高(0.5-6倍),表明SmP具有促进烟草类黄酮生物合成的功能,但所调控的支路与花色素合成无关。初步试验结果表明,转SmP基因烟草对蚜虫具有很高的抗性,可有效地抑制蚜虫在烟草上的生长,抑制率最高可达92%-100%。这一抗性与烟草中类黄酮的积累可能具有直接的联系,但还需要进一步的试验证明。 5. 与美国俄亥俄州立大学Erich Grotewold 博士实验室合作,完成了微型EST库50个克隆的测序并进行了分析,从中获得了水母雪莲花色素合酶基因SmANS及醛脱氢酶基因SmALDH的特异探针。根据SmANS特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmANS的cDNA序列,全长1229bp,编码一个356aa的蛋白质。SmANS在cDNA水平上与同属的翠菊ANS基因高度同源,但同源区域集中在ORF区域,达到80%,mRNA 预测二级结构十分复杂;推测氨基酸序列与翠菊ANS同源性达到82.9%。SmANS属于2OG-FeII_Oxy家族,在2OG-FeII_Oxy结构域高度保守,与翠菊、甜橙ANS保守结构域同源性达到94%。预测蛋白二级结构以α-螺旋-β-折叠为主,由7个主螺旋和11个主β-折叠及随机结构连接而成,并具有2OG-FeII_Oxy家族活性中心的三个保守的组氨酸残基(His84、His235、His291)和一个天冬氨酸残基(Asp237)。 6. 根据微型EST库中获得的SmALDH特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmALDH基因cDNA 序列,全长1664bp,编码一个491aa的蛋白质。SmALDH基因cDNA具有独特的碱基组成,3/-UTR富含A+T,占该区域碱基总量的80%,5/-UTR的A+T和G+C各占50%,比ORF区域(52%)还低,因此其mRNA二级结构中5/-UTR可以单独形成自身二级结构并且十分稳定,这可能影响基因的表达。这一现象在水稻、玉米等植物中也存在。SmALDH在cDNA水平上在ORF区域与拟南芥、藏红花、水稻等具有较高同源性,分别为64.03%、63.89%、63.72%,但在推测蛋白氨基酸序列水平上同源性反而较低,分别为54.9%、54.3%、54.0%。SmALDH缺少线粒体定位信号,为胞质醛脱氢酶,具有一个Aldedh 保守结构域,还具有与1OF7-H相似的以α-螺旋-β-折叠为主的二级结构,由10个主螺旋和15个主β-折叠及随机结构连接而成。由于ALDH在植物细胞乙醇发酵中具有解除醛类物质毒害的功能,因此SmALDH基因的克隆为改造细胞自身以适应发酵培养条件,解决水母雪莲细胞大规模培养中需氧问题提供了可能。
Resumo:
金属硫蛋白(metallothionein,MT)和植物络合素(phytochelatin,PC)是植物中能够与金属离子结合的两大类多肽。二者均富含Cys,但前者是mRNA的编码产物,后者是酶促反应的产物,植物络合素合酶(PCS)则是合成PC的关键酶之一。目前已发现许多植物同时存在金属硫蛋白基因和植物络合素合酶基因。研究重金属胁迫下这两类基因的表达对了解植物的重金属抗性的分子机制具有重要意义,同时还可以为培育能用于植物修复的品种提供新思路。 本论文从大蒜中克隆了一个type 2 MT基因,命名为AsMT2a,将其在大蒜中的表达模式与大蒜的植物络合素合酶基因(AsPCS1)进行了比较,并对二者的过表达转基因拟南芥的重金属抗性进行研究。其主要结果如下: 1. AsMT2a基因全长525 bp,编码79个氨基酸,其中有14个Cys 残基。 推测的氨基酸序列分析表明其Cys的位置和数目与来自其它植物的type 2 MT蛋白的完全一致。 2. RT-PCR的结果显示,大蒜根部AsPCS1的表达在Cd处理的短期(1 hr)内迅速增强,同时PCs含量也大幅度增加。但AsMT2a的表达在Cd处理10 hr后才有明显的增加。说明AsPCS1可能在植物对重金属的急性解毒方面起主要作用,而AsMT2a则在植物对重金属长久耐性中的离子平衡方面起更大作用。暗示在大蒜暴露于Cd胁迫的不同时期AsPCS1和AsMT2a基因可以互相协调而对重金属胁迫作出反应。此外,在不同胁迫条件下,AsPCS1和AsMT2a的表达模式不同,其中Cd、As和热激可以促进根中AsPCS1的表达和PCs的积累。 3.将AsPCS1和AsMT2a转入对砷和镉敏感的酵母菌株 FD236-6A中,RT-PCR的结果显示这两个基因均可在酵母中稳定表达,对转化子的重金属抗性实验表明这两个基因均可提高转化子对砷和镉的抗性。 4.将AsPCS1和AsMT2a 置于 CaMV 35S启动子下转入拟南芥中,RT-PCR结果表明,这两个基因均可在拟南芥中表达。有趣的是,AsPCS1在拟南芥中存在两个转录本,且二者均具有完整的ORF,其推测的氨基酸序列相差38个氨基酸。说明部分AsPCS1在拟南芥中经过了精确的剪切和拼接过程,但其机制尚不清楚。 5.在Cd 胁迫下,AsPCS1的超表达拟南芥的生长好于野生型植株,主要表现在转基因拟南芥的根较长,根数目较多;但在As胁迫下AsPCS1转基因植株与野生型植株没有明显的差别。与此不同的是将AsMT2a转入拟南芥后,转基因植株的As抗性明显增强,同样表现在根长度和根数目上。进一步将AsPCS1和AsMT2a同时转入拟南芥进行超表达,在Cd胁迫下,转基因植株的生长好于野生型植株,且种子萌发率也较高。 6.Cd和As胁迫下,AsPCS1过表达植株的PCs含量增加,同时Cd和As的积累量也明显增加,其中Cd胁迫下Cd含量增加最多,平均比野生型对照增加4倍;而As胁迫下As含量比野生型对照增加1.2倍。在Cd和As胁迫下,AsMT2a过表达植株的Cd和As积累量与野生型相比分别增加1.4倍和0.8 倍。双价基因AsMT2a +AsPCS1过表达植株的 Cd 积累量是野生型的5.8倍,是AsMT2a过表达植株的2.4 倍,是AsPCS1过表达植株的1.2倍。 在克隆AsMT2a的同时,我们还从大蒜中克隆到了一个金属硫蛋白基因家族的新成员,命名为AsMT2b,并对其功能进行了初步探讨。主要结果如下: 1.AsMT2b 全长520 bp,其开读框架为243 bp,编码80个氨基酸,其中含有15个Cys 残基。对推测的氨基酸序列分析表明AsMT2b的N端和C端domain内,Cys的数目和排列方式与其它type 2 MT蛋白明显不同。 其N 端domain内的结构为CXXC——CXC——CXC——CXCC,C端domain 内的结构为CXXC——CXC——CXC。暗示AsMT2b 可能具有与其它MT不同的生物学功能。 2.在较低浓度Cd(200 µM)胁迫下,AsMT2b的表达量随着处理时间(24 hr内)的延长而降低,但随着处理浓度的升高(500 µM)和处理时间延长(48 hr),其表达量又逐步增强,说明AsMT2b可能在胁迫强度增大到一定值时方起作用。 3. 将AsMT2b转入对Cd和As敏感的酵母菌株FD236-6A中,发现AsMT2b对酵母As抗性的提高贡献不大,但可明显提高酵母对Cd的抗性。 4.对AsMT2b的超表达拟南芥的重金属抗性分析表明,与野生型植株比较,转基因植株具有较强的Cd抗性,表现在Cd胁迫下,种子的萌发率较高,根较长,侧根数较多。但在As胁迫下,转基因植株的生长和野生型没有明显差异。可以看出,转AsMT2b的拟南芥对重金属的抗性不同于转AsMT2a的植株,前者的抗Cd性较强,而后者的抗As性较强。 5. Cd胁迫下,AsMT2b过表达拟南芥的Cd含量明显增加,平均比野生型对照植株增加70%,但各个株系的增加幅度不一致。 另外,我们还对CdCl2胁迫下,大蒜幼苗中镉的积累及氧化胁迫和抗氧化能力的变化进行了研究。结果表明在CdCl2 胁迫下,大多数Cd在根部积累,而只有少量的Cd积累于叶片中。5 mM 和10 mM CdCl2 抑制SOD和CAT的活性,但随着处理时间的延长,二者的活性回复到对照水平或高于对照。在CdCl2胁迫下,POD的活性明显增强,同时脂质过氧化产物积累。这些结果说明镉胁迫下,植物细胞中氧化胁迫加剧,而抗氧化酶活性的增强是植物对次生氧化胁迫的一种适应策略。 综上所述,在重金属胁迫下, AsPCS1和AsMT2a之间及AsMT2a和AsMT2b之间均表现出明显的协调反应。这种协调反应可能是植物维持细胞内离子稳态的机制之一。而重金属胁迫下,过表达AsPCS1,AsMT2a或AsPCS1+AsMT2a的拟南芥体内的重金属含量明显增加,表明这些基因可望用于重金属污染土壤的植物修复中。
Resumo:
近年来,植物耐盐生物技术研究取得了可喜的进展,特别是通过抗盐基因转化在一定程度上使植物的耐盐性得到了提高。然而,植物的耐盐性是一个多基因控制的复杂性状,依赖于多个基因之间的相互作用。因此,只是将单个基因导入植物获得的抗逆性还是远不能达到满意的效果。一般认为,将多个与耐盐相关的基因转入到同一个植物(即所谓的“复合基因转化”)将会大大提高转基因植物的耐盐能力。 渗透调节是植物抵御盐胁迫的主要方式。植物渗透调节的方式分为两类:一是在细胞中吸收和积累无机盐,如通过离子通道、Na+/H+逆向运输蛋白和ATP酶/H+泵;二是在细胞中合成有机溶质,如脯氨酸和甘氨酸甜菜碱。 我们通过农杆菌介导法向转AtNHX1(拟南芥Na+/H+逆向运输蛋白编码基因)的番茄(Lycopersicum esculentum L. ‘Moneymaker’)株系X1OEA1自交二代植株(T2)中转入山菠菜甜菜碱醛脱氢酶基因(BADH)。PCR、Southern、RT-PCR和甜菜碱含量分析结果证明,BADH已经整合到目标植物基因组,并在转基因植株中转录和翻译表达。叶绿素荧光(Fv/Fm)、相对电导率(Rc/Rc’)、叶绿素含量(Chla+b)、叶绿素a/b比(Chla/b)和光合速率(Pn)测定结果表明,在200 mM NaCl 胁迫下,二次转化的番茄植株各项生理指标均优于转单基因AtNHX1的番茄。初步证明“复合基因转化”有助于进一步提高植物的耐盐性。同时对番茄的转化系统进行了优化,结果表明使用抗生素‘特美汀’作为抑制农杆菌的抗生素的转化效率明显高于使用头孢霉素。
Resumo:
真菌病害是造成采后新鲜水果损失的一个主要原因。生物拮抗菌能有效地防治果实采后腐烂,降低杀菌剂的用量,从而增加了食品安全性和降低了潜在的环境危害。然而,与化学杀菌剂相比,单独使用生物拮抗菌对果实采后病害的控制效果有时不如化学杀菌剂明显。因此,为了提高拮抗菌的生防效力,有效控制果实的采后病害,本文主要研究了拮抗菌与化学物质使用的防病机理,并从冬枣果实中克隆β-1,3-葡聚糖酶基因并对其特性进行了初步分析。研究结果表明: 1. 酵母菌Cryptococcus laurentii和枯草芽孢杆菌Bacillus subtilis能够有效的防治冬枣果实采后青霉病和黑霉病的发生,而且C. laurentii对病害的防治效果比B. subtilis好。拮抗菌的抑病效果与使用浓度成正比。在接种C. laurentii的伤口上再接种病原菌可以显著刺激酵母菌的生长。然而,在接种B. subtilis的伤口上接种病原菌则不增加拮抗细菌的群体数量。 2. 不同酵母拮抗菌对四种杀菌剂(Deccozil,Sportak,Iprodine和Stroby)的敏感程度不同。其中,R. glutinis对Deccozil,Iprodione和Stroby最敏感。将低剂量的杀菌剂与酵母菌配合能显著增强酵母菌对采后病菌的抑制作用。C. laurentii与100 µl/L的Stroby配合能完全抑制青霉和黑霉病菌的孢子萌发。2%(w/v)的碳酸氢钠(SBC)与C. laurentii或T. pullulans配合使用显著抑制采后病菌(Penicillium expansum或Alternaria alternata)的孢子萌发和芽管伸长。SBC显著增强拮抗菌对梨果实采后青霉病和黑霉病的防治能力。C. laurentii对采后病害的防治效果好于T. pullulans的防治效果。 3. C. laurentii和B. subtilis对冬枣果实抗病性的诱导与接种距离和接种时间密切相关。距接种拮抗菌近的部位,抗性诱导就越强。酵母菌诱导果实的这种抗病性与诱导果实几丁质酶,β-1,3-葡聚糖酶, PAL,POD和PPO活性有关。 4. 采前喷施2 mM的水杨酸(SA)和0.2 mM的茉莉酸甲酯(MeJA)显著降低甜樱桃果实采后褐腐病的病斑直径, 并能诱导甜樱桃果实β-1,3-葡聚糖酶, PAL, POD和PPO活性以及乙烯含量的增加。采前处理对果实抗病性的诱导效果要好于采后处理。采前和采后SA或MeJA处理,贮藏于25C的甜樱桃果实β-1,3-葡聚糖酶和PAL活性显著高于贮藏于0C的甜樱桃果实的酶活性。2 mM的SA显著抑制了Monilinia fructicola的孢子萌发和菌丝扩展;而0.2 mM的MeJA则对M. fructicola几乎没有抑制作用。在贮藏早期,MeJA对果实β-1,3-葡聚糖酶和PAL活性的诱导作用要强于SA的诱导作用。 5. 1 × 108CFU/ml的C. laurentii,以及5 × 107CFU/ml的C. laurentii与0.2 mM的MeJA 配合使用均可诱导桃果实的抗性,并显著降低果实青霉病和褐腐病的病斑直径。0.2 mM的MeJA能促进C. laurentii生长,抑制P. expansum的菌丝扩展, 但对M. fructicola基本没有抑制作用。在25和0C,MeJA和C. laurentii单独或配合使用都诱导了桃果实几丁质酶,β-1,3-葡聚糖酶,PAL和POD活性的升高。这些抗病相关酶活性的升高可能与病斑扩展的程度是直接相关的。 6. 通过设计简并引物,采用降落PCR,扩增出β-1,3-葡聚糖酶基因的同源片段,分别克隆到两个彼此间同源性很低的β-1,3-葡聚糖酶的cDNA全长(Glu-1和Glu-2)。RT-PCR结果表明,Glu-1基因的表达受酵母拮抗菌C. laurentii处理所诱导,这一结果与酵母拮抗菌诱导果实β-1,3-葡聚糖酶活性的增加相呼应;而Glu-2基因的表达则不受C. laurentii处理所诱导。
Resumo:
实验室前期工作证明OsRAA1在玉米泛素启动子驱动下组成型表达,可以抑制水稻初生根的生长,促进不定根的形成,形成不同程度螺旋状的初生根,根的向地性反应减缓,这些表型和野生型水稻用生长素处理的表型类似,而且OsRAA1基因的转录受生长素诱导,这些结果表明OsRAA1可能参与了生长素的信号转导途径。但这些表型产生的机理还不是很清楚。在水稻中,茉莉酸在根发育过程中的作用多为生理实验的报道;拟南芥中的研究表明生长素信号转导和茉莉酸信号转导可能都受26S蛋白酶体的调控。由此我们推测茉莉酸在根的发育过程中可能也起着同样的促进作用。本论文在超表达OsRAA1水稻基础上旨在克隆新基因,并对新基因功能进行研究,以探讨茉莉酸在水稻根发育过程中的分子机理,并对生长素和茉莉酸信号转导的关系进行探讨。 首先运用双向电泳技术结合质谱分析技术,在超表达OsRAA1水稻背景下发现了受体激酶家族DUF26的一个成员明显下调,我们命名为OsRMC(Oryza sativa Root Meander and Curling,AAL87185),Western杂交进一步证明了这个结果。 OsRMC位于4号染色体,信息学分析表明只有一个拷贝,没有内含子,ORF阅读框为777bp,编码的蛋白分子量为27.9 kDa,等电点(pI)为5.01。对该蛋白进行同源性比较发现,其含有2个C-X8-C-X2-C基序(Cys-rich repeat, CRR)即半胱氨酸富集区,其中第四个半胱氨酸残基不保守,该基序会形成二硫键,编码两个未知功能的DUF26(Domain Unknown Function 26)结构域。OsRMC由一个信号肽和两个CRR区组成,但没有跨膜区和激酶区。RT-PCR显示OsRMC可能是组成型表达的基因;亚细胞实验表明OsRMC是膜定位的蛋白。Western blot显示OsRMC受茉莉酸诱导表达,受生长素的抑制。 RNAiOsRMC转基因水稻在暗处培养时,抑制了初生根的生长,使侧根数目减少,但促进了不定根的生长和数目的增加;第二叶鞘变短,这些表型和前人报道的外源茉莉酸处理野生型的表型一致。转基因对生长素信号转导和合成没有影响,但初生根和第二叶鞘对外源茉莉酸更加敏感,说明RNAiOsRMC转基因水稻可能增强了茉莉酸信号转导途径。分析转基因水稻的茉莉酸信号转导途径部分相关基因的表达变化,根中受茉莉酸信号转导特异诱导的病原相关基因RSOsPR10的表达明显增多,而JAmyb和OsNDPK1的表达没有变化,证实转基因增强了茉莉酸信号转导其中的一个路径;进一步分析茉莉酸合成途径12-OXO-PDA(12-氧代-顺,顺-10,15-植物二烯酸)还原酶基因OsOPR的表达发现与野生型没有明显差别,说明转基因可能没有影响体内的茉莉酸合成途径。RNAiOsRMC转基因水稻的初生根比野生型的更容易发生弯曲,实验表明培养过程中茉莉酸和背触反应(negative thigmotropism)共同作用使转基因的初生根更容易发生卷曲,而光信号会增强卷曲程度。但RNAiOsRMC转基因水稻并没有影响根的向地性,暗示RNAiOsRMC转基因可能增强了根的回旋运动或(和)背触反应,从而促进了根的弯曲和卷曲。这些结果证明OsRMC参与的茉莉酸信号转导过程在水稻根的发育、弯曲和卷曲过程中起着重要的促进作用。通过对超表达OsRAA1和RNAiOsRMC转基因水稻的分析,说明水稻中存在着生长素信号转导促进茉莉酸信号转导的途径。 综合以上实验结果认为,OsRAA1调控了受体激酶家族DUF26的一个成员OsRMC,使其表达量降低,该过程增强了茉莉酸信号转导途径;确认了受体激酶家族DUF26的基因具有重要的生物学功能,证实了OsRMC调控的茉莉酸信号转导在水稻根系发育、根弯曲和卷曲过程中具有重要的促进作用;证明水稻中存在着生长素信号转导促进茉莉酸信号转导的途径,为完善各种植物激素调控水稻根系发育的网络提供了新的实验证据。
Resumo:
SKP1 (S-phase kinase-associated-protein 1) 家族蛋白是普遍存在于真核生物中的一类小分子量蛋白质,其主要的生物学功能在于参与SCF复合体的形成,从而调控生物体内泛素介导的蛋白质降解,并参与多方面的生物发育过程。SKP1蛋白能够同时和Cullin蛋白以及F-box蛋白结合,形成SCF复合体的核心部分。因此,SKP1正常功能的维持对于SCF复合体功能的实现至关重要。研究显示,植物中尤其是以拟南芥为代表模式植物中已经发现了21个SKP1基因成员,并发现其中的ASK1参与了多个SCF复合体的形成并调控着包括植物雄性减数分裂、生长素、赤霉素、茉莉酸和乙烯等生理和发育进程。但是来自高等植物尤其是小麦和水稻中的SKP1基因还鲜有报道,其功能还不为所知;此外,SKP1基因与ABA的关系还没有任何报道。 本文利用筛选小麦减数分裂期小花的cDNA文库结合RT-PCR的方法从小麦中分离到了一个SKP1同源基因,并命名为TSK1 (Triticum aestivum SKP1-Like 1)。序列比较结果显示TSK1与多个植物来源的SKP1基因有较高的同源性,对其推测的编码蛋白序列的分析发现TSK1与包括拟南芥来源的ASK1/ASK2等蛋白的羧基端存在非常高的保守性。 在对TSK1表达模式的研究中,本文发现TSK1主要是集中在小麦花序和幼根中表达。利用多种激素对小麦幼苗处理之后,发现TSK1的表达受ABA的抑制,但是当小麦中ABA合成受抑的情况下,TSK1的表达会有所增加,说明TSK1的表达受ABA的调控。RNA原位杂交显示TSK1基因在花顶端分生组织、花药以及幼根等分生较旺盛的组织中有较强的表达,暗示该基因可能参与了与细胞分裂相关的过程。 为了研究TSK1可能具有的功能,本文首先在ask1-1突变体背景上超表达TSK1,发现能够部分恢复ask1-1突变体雄性不育的表型,说明TSK1和ASK1在植物减数分裂过程中存在某种保守性。 在野生型拟南芥中超表达TSK1造成了拟南芥多个方面的变化,包括萌发和开花推迟,气孔开度减小等。进一步的观察发现,转基因植株的萌发和营养生长都呈现出对ABA的超敏感,后续证据证实这种ABA的超敏感性并不是由于转基因拟南芥中ABA合成途径的改变所造成的,而极有可能是影响了ABA的信号传导过程。RT-PCR的结果显示,转基因植株中多个ABA相关的已知基因表达量的发生了变化。 为了提供植物中SKP1家族成员参与调节植物ABA信号传导途径证据,本文对拟南芥ASK1/ask1 ASK12/ask2的杂合双突变体自交后代进行了研究。结果显示,ask1/ask1纯合突变体和ask1/ask1 ASK2/ask2植株表现出对ABA的弱敏感性。该结果从另一个侧面印证了TSK1超表达植株对ABA超敏感表型。 此外,TSK1超表达拟南芥也表现出生长素相关表型,也印证了该基因可能与ASK1类似,参与到生长素介导的根发育过程。 综上所述,本文认为TSK1参与了植物激素介导的植物发育过程,而且极有可能是形成了目前未知的某种SCF复合体。最重要的是,本文的结果为SCF复合体参与调节植物ABA信号传导途径提供了生理及遗传层面的证据。
Resumo:
植物顶端分生组织中干细胞数量的维持对于侧生器官的发生至关重要。在干细胞的基因调控网络中WUSCHEL (WUS) 是一个关键成员,围绕该基因形成两个反馈调节环,控制分生组织中干细胞群的平衡。 论文分析了用激活标签法 (activation tagging) 获得的突变体sef (stem-ecotopic-flowers),其最大的表型特点是花序轴上产生异位花和幼苗下胚轴增长。本论文就此两个表型产生的机理进行了探索,以期了解WUS基因的新功能。 对sef的表型观察发现异位分生组织不仅在花序轴上出现,而且也出现在叶柄、叶片、托叶叶腋内、花梗、花梗腋内以及花器官上。组织切片结果表明花序轴上的异位分生组织起源于已经分化的皮层细胞。对突变体的分子鉴定证明T-DNA是以单拷贝插入到WUS起始密码子上游810 bp处。对插入位点上下游各10 kb的4个基因在花序轴中的表达水平进行了分析,结果表明只有WUS基因的表达量升高,说明增强子只对WUS基因发挥了激活作用,暗示了WUS基因过表达与异位花之间存在某种联系。转35S::WUS的拟南芥幼苗下胚轴与根部出现异位的生长点;WUS被诱导表达的突变体pga6-1花序轴上出现异位花芽,证实sef的表型是由WUS超表达所导致。利用组织原位杂交和RT-PCR分析了WUS、CLAVATA3 (CLV3)、LEAFY (LFY) 与AGAMOUS (AG) 在异位分生组织中的表达模式与表达水平,结果表明WUS、CLV3、LFY、AG在花序轴表皮以下皮层中异位表达。这些结果表明WUS能激活CLV3异位表达,从而在已经分化的皮层中重新产生具有分生组织特征的细胞,同时WUS异位激活AG的表达并使LFY也在这些异位的分生组织中表达,这些分生组织发育方向被LFY与AG所决定,最终发育为异位花器官。 sef突变体另外一个突出的表型是幼苗的下胚轴增长。对幼苗期下胚轴以及胚胎4个时期的胚干细胞数进行统计,结果表明下胚轴与胚干细胞数目都呈现出sef比野生型多而wus-1比野生型少的趋势,因此sef幼苗下胚轴增长是由于细胞数目改变引起的。进一步分析发现这种区别是由于胚胎早期(授粉后1~3天)胚干细胞分裂速率的差异所造成的。利用基因芯片杂交分析突变体的基因表达谱,结果发现许多与细胞分裂相关的基因在sef中表达水平升高。RT-PCR证实这些基因在胚胎时期的表达水平升高,说明胚胎早期胚干细胞分裂速率的不同导致了幼苗下胚轴的异常。 综上所述,我们的研究结果揭示了sef异常表型的产生的可能机制。在已经分化的皮层中激活标签介导的WUS超表达激活干细胞标志基因之一CLV3和花器官基因AG,并使LFY异位表达,重新产生具有分生组织特征的细胞,这些分生组织的发育方向被LFY和AG所决定,最终发育为异位花。在sef的早期胚胎中,WUS表达增强使细胞分裂相关基因表达水平升高、细胞分裂增快,说明WUS与细胞周期相关基因的调控存在某些联系。 本论文的创新之处在于首次提出WUS表达增强能在分化的组织中产生具有分生组织特征的细胞以及WUS调控细胞分裂的结论。
Resumo:
染色体黏着是有丝分裂和减数分裂的关键事件,是保证姊妹(或同源)染色体正确分离并分配到子细胞中的关键调控环节之一,它建立于细胞分裂前的S期将新复制的姊妹染色体紧密联系在一起。来自酵母的研究结果已经证明姊妹染色体之间的黏着是由多亚基的蛋白质复合体-黏着素所介导的。在芽殖酵母有丝分裂中,黏着素由Scc1,Scc3,Smc1和Smc3四个亚基组成。减数分裂黏着素的组成与有丝分裂中的相似,只是Scc1被其减数分裂特异的Rec8变体所替换。目前,已经从高等真核生物线虫,果蝇,人,鼠以及拟南芥中分离到了黏着素相关的基因,但是对于这些基因在高等真核生物特别是植物细胞分裂中的功能还知之甚少。即使在酵母中人们对于减数分裂和有丝分裂过程中有关染色体黏着与分离的许多基本问题仍然不清楚,而且许多现象表明减数分裂的详细机制在各种生物中存在重大差异。 我们通过同源克隆的方法证明水稻(和拟南芥)基因组编码4个RAD21/REC8-like基因。这4个基因均以单拷贝存在,在核苷酸水平上没有相似性。它们所编码的蛋白质的相似性主要局限于其N-末端结构域和C-末端结构域。这4个蛋白质的中间区域没有(或者仅有极低的)相似性,但是中间区域都含有潜在的核定位信号,PEST序列,分离酶的识别序列以及多个磷酸化位点。 半定量RT-PCR,原位杂交以及Western杂交结果显示这4个基因都在生殖器官中优势表达,但是它们在花发育过程中的表达动态是不同的。OsRAD21-1和OsRAD21-3都在减数分裂时期的颖花中表达量最高,但是OsRAD21-3还在成熟花粉中高表达;OsRAD21-4在减数分裂前的颖花中表达量最高;OsRAD21-2则在雌雄蕊形成时期表达最强,之后逐渐降低。这些结果暗示这4个基因的功能可能是不同的。 免疫荧光定位分析表明,OsRad21-1和OsRad21-3 特异地定位于有丝分裂的染色体上,其分布动态表明这两个蛋白可能都参与了有丝分裂姊妹染色体之间的黏着。由于水稻四个RAD21/REC8类基因中,只有OsRAD21-3在花粉发育过程中表达,同时水稻花粉的发育成熟要经过两次有丝分裂,推测OsRad21-3蛋白可能参与这两次有丝分裂过程姊妹染色体之间的黏着。OsRad21-4则特异地定位于减数分裂前间期到中期Ⅰ的染色体上,说明它可能特异地介导减数分裂过程姊妹染色体之间的黏着。与其它已知的Rad21/Rec8-like蛋白不同,不论在有丝分裂还是在减数分裂过程中,OsRad21-2蛋白都不定位于染色体上而是特异地定位在核仁中,并且它的动态变化与核仁重建和解体的动态规律在时间上也是相一致的,这说明OsRad21-2是一种新的核仁蛋白质而与染色体的黏着无关。 OsRAD21-4 RNAi转基因水稻植株的花粉活性受到严重影响,种子结实率降低。雄性减数分裂过程中染色体出现多种异常行为:前期Ⅰ染色体异常凝集;同源染色体提早分离;染色体出现片断化。进一步的FISH实验结果证明RNAi株系中同源染色体配对和姊妹染色体臂的黏着均发生异常。因此,OsRad21-4是酵母Rec8的同源蛋白,是正确的减数分裂所必需的。 与表达分析和功能分析所得的结果相一致,进化树分析可以将Rad21/Rec8-like蛋白质分为三个亚家族:(1)Rad21亚家族,参与有丝分裂姊妹染色体黏着;(2)Rec8亚家族,参与减数分裂染色体黏着;(3)Rno亚家族,目前仅发现于高等植物中,是一种核仁蛋白质而与其它的Rad21/Rec8-like蛋白的功能不同,可能不参与染色体之间的黏着。
Resumo:
青蒿素是从中药青蒿中提取的新型抗疟药物,然而,青蒿素在青蒿中的含量非常低。近年来,随着青蒿素生物合成途径相关酶基因的克隆,基因工程成为提高青蒿素含量的有效途径之一。在对青蒿进行遗传转化过程中,高效稳定的丛生芽诱导体系是青蒿转化成功的关键。然而,随着继代次数的增多,青蒿丛生芽诱导能力存在退化现象。本文首先研究了滤纸对青蒿丛生芽诱导的影响和在遗传转化中的应用,进而研究了反义鲨烯合酶基因表达对青蒿素生物合成的影响。主要结果如下: 研究了在丛生芽诱导培养基上加铺滤纸对青蒿丛生芽诱导的影响,结果发现,加铺滤纸后青蒿丛生芽诱导率显著提高,丛生芽诱导率能够达到97%左右。在此高效丛生芽诱导体系的基础上,我们进一步探讨了滤纸在青蒿遗传转化中的应用。结果表明,在筛选培养基上加铺一层滤纸,青蒿的抗性丛生芽诱导率能够达到59.7%,其中在12.5%的抗性丛生芽中能够得到抗性生根植株,生根植株PCR检测均为阳性,在部分PCR检测阳性的植株中检测到了GUS的稳定表达。 利用上述改进的青蒿遗传转化体系,我们得到了反义鲨烯合酶基因的青蒿转化植株。PCR检测和Southern杂交检测结果证明了反义鲨烯合酶基因已经整合到青蒿基因组中。RT-PCR检测发现,在转基因株系ASQ3和ASQ5中鲨烯合酶基因在mRNA水平上得到部分抑制,鲨烯含量比对照降低了20%左右;青蒿素的含量分别提高了23.2%和21.5%,结果表明抑制鲨烯合酶表达能够有效促进青蒿中青蒿素的生物合成。
Resumo:
CCCH型锌指蛋白是进化上比较保守的一类锌指蛋白家族,其典型的氨基酸的基序为C-X7-8-C-X5-C-X3-H,其中X为任意氨基酸,这类锌指基序一般以重复的双拷贝形式存在。本论文克隆并鉴定了一个全新的、只含有一个CCCH型锌指基序的基因,利用反义RNA策略研究该基因功能,结果发现该基因的反义转基因植株表现出叶夹角增大的表型,因此我们将该基因命名为OsLIC1(Oryza sativa Lamina Increased Leaf Angle Control 1)。生物信息学分析发现该基因定位于水稻6号染色体近端粒的一端,位于BAC克隆AP004324中。OsLIC1与通常的CCCH型锌指蛋白含有多个重复的CCCH锌指基序不同,它只含有一个CCCH型锌指基序。除了CCCH锌指结构域以外,该蛋白在靠近C-端的位置还有一段丝氨酸(Ser)富集的区域,在此区域之前,还有一个在真核生物中相对保守的,以EELR为核心基序的结构域。采用基因枪将含OsLIC1-GFP融合构建的瞬时表达载体轰击入洋葱内表皮细胞,激光共聚焦显微镜观察发现OsLIC1-GFP可以定位到细胞核中。利用酵母转录激活系统发现以EELR为核心基序的结构域具有转录激活的功能。体外核酸结合活性分析显示OsLIC1蛋白可以结合双链DNA,这些结果证明OsLIC1是一个转录因子,这也是在植物中首次发现CCCH型锌指蛋白可以作为转录因子的方式调节基因的表达。 用玉米泛素启动子(Maize Ubiquitin promoter)驱动OsLIC1基因的反义表达载体转化水稻,获得的内源OsLIC1基因表达量下降的转基因植株表现出三个明显的表型:转基因植株的叶夹角增大;转基因的株高低于对照以及转基因植株的穗粒数减少。扫描电镜观察发现转基因植株叶夹角增大是由于近轴面细胞排列发生了改变以及维管束发育受阻引起的。转基因植株的Southern Blot和RT-PCR分析,结合Western Blot分析证明了转基因植株的表型与转基因事件之间的直接联系,并证明了转基因植株中内源OsLIC1在蛋白水平的确受到了抑制。采用RT-PCR技术、Promoter::GUS和RNA in situ杂交三种方法相结合研究OsLIC1基因的表达模式,结果表明OsLIC1基因主要在叶颈、节以及分蘖原基中表达,这与转基因植株的表型相吻合,进一步证明了转基因植株的表型与基因功能之间的关系。Affymetrix 水稻全基因组芯片分析结果显示许多受油菜素内酯诱导表达的基因在转基因植株的叶颈材料中表达量上调,RT-PCR进一步验证了这一结果。由于在转基因植株中出现的叶夹角增大的表型和水稻油菜素内酯的作用相似,而基因芯片的结果又从分子水平提供了证据和线索。进一步采用RT-PCR和Promoter::GUS相结合的方法研究OsLIC1基因对油菜素内酯的响应,结果发现OsLIC1基因可以被油菜素内酯诱导表达。而且,OsLIC1基因的反义转基因植株与野生型相比,表现出对油菜素内酯信号更敏感的响应。根据以上结果,推测OsLIC1可能是水稻油菜素内酯信号转导途径的负调控因子。水稻油菜素内酯合成和信号转导的突变体d2-1和d61-1具有直立的叶片的特征。用反义OsLIC1转基因植株以及野生型水稻与d2-1和d61-1突变体分别进行遗传杂交,结果发现在反义OsLIC1转基因植株与d2-1和d61-1突变体的杂交F1代中,都表现出叶夹角增大的表型。但是,在F2代中,在d2-1和d61-1纯合背景下,分别表现出叶夹角增大和叶片直立的表型,说明OsLIC1上位于d2-1,而d61-1则上位于OsLIC1。这一结果进一步证明了OsLIC1是通过参与水稻油菜素内酯信号调节而发挥对水稻叶夹角的调控作用。
Resumo:
维生素E(V.E.)在动物细胞内具有抗氧化等重要作用,但在植物体内的功能却鲜为人知。本研究以烟草为材料,利用根癌农杆菌(Agrobacterium tumefaciens)介导法在烟草中过量表达拟南芥来源的VTE1。通过外源VTE1基因的过量表达提高内源V.E.的含量, 进而研究转VTE1基因植株对胁迫的耐受性反应,以探讨植物体内V.E.含量与植物胁迫耐受性的关系,为植物抗逆机理的研究和利用奠定基础。 本实验利用CaMV35s启动子与拟南芥来源的生育酚环化酶基因(VTE1)构建的嵌合表达载体,以根癌农杆菌介导的叶盘法转化烟草W38。实验结果表明: 1. 具有卡那霉素抗性的再生植株经PCR检测,得到了与阳性对照一致的495bp的目标片段;经RT-PCR检测,其中90%有外源基因表达。 2. 转基因植株的V.E.含量比对照植株高2倍左右,个别株系高达10.16倍。 3. VTE1基因的表达受环境胁迫的影响,不同程度的冷冻、热激、PEG处理均可影响VTE1基因的表达。经过冷冻处理60分钟、热处理20小时、以及PEG处理6小时,该基因表达量均有提高。冷冻处理条件下该基因的表达量是未处理的3倍,热处理条件下是未处理的2倍左右,PEG处理是未处理的3.5倍。在冷冻、热激、PEG胁迫处理过程中,转化苗的V.E.含量变化与外源VTE1基因的表达相对应,表明转化苗的V.E.合成主要由外源VTE1基因的终产物VTE1催化;在冷冻、热激、PEG胁迫处理过程中,V.E.含量与APX、CAT、SOD等抗氧化酶活性之间存在一定程度的正相关性,表明V.E.与这些抗氧化酶共同组成了植物体内的抗氧化网络,保护植株免受氧化损伤;V.E.的变化与MDA之间存在一定程度的负相关性,减轻植物的过氧化损伤; 4. V.E.可提高植物的抗旱性,我们检测了11个转化烟草株系的叶片相对含水量(RWC),在大多数转化烟草植株中,干旱胁迫24小时的RWC都比野生型高,高出0.16-45%(p<0.001)。表明转基因烟草比野生型更抗旱; 5. 在耐盐性实验中转基因植株对盐的抗性明显高于野生型烟草;同时,在不同盐浓度(150、250mM)胁迫下转基因植株V.E.含量比未转化植株增加了1.3-1.8倍。 这些研究结果表明,在植物体内转入V.E.代谢途径中的单个外源基因,可有效提高内源V.E.合成,提高植株对环境胁迫的抗性。
Resumo:
对于双子叶模式植物拟南芥在逆境应答中的机理研究已取得了很大的进展,但在单子叶植物中的相关研究相对滞后。在单子叶植物水稻中仅仅报道了一些转录因子类基因以及与代谢有关的酶类基因,但与低温有关的分子伴侣、离子通道和载体等类基因的研究少见报道。 受低温诱导的水稻基因OsCOIN(AK104280)来自水稻10K cDNA芯片,它的cDNA全长有1593bp,开放阅读框内为1089bp,编码363个氨基酸,蛋白质的计算分子量42kDa,等电点5.25。在基因组序列中有7个外显子,6个内含子。生物信息分析显示,OsCOIN在第72—106氨基酸间形成一个指环结构域。OsCOIN蛋白没有跨膜区,定位于细胞质和细胞核。通过酵母双杂交实验证明了指环蛋白OsCOIN没有转录活性,故不是转录因子。RT-PCR结果表明,OsCOIN在所选的11种水稻组织中都有不同程度的表达,4C处理0.5h时OsCOIN基因开始较强地表达,持续较强地表达到4C处理48小时,72h时OsCOIN的表达量下降到起始的水平。另外,该基因表达还受ABA和盐诱导。 利用农杆菌介导的转化手段,得到三个OsCOIN超表达株系和六个RNAi株系。RNAi株系分蘖增多、植株矮化。为了分析OsCOIN与逆境胁迫的关系,实验中分析了超表达植株对低温等胁迫的耐性。结果表明,4C处理60h、72h、84h后,所有植株都出现萎蔫,恢复生长两周后超表达植株的存活率(分别为76.2%、71.4%和50%)明显高于野生型的存活率(分别为52.4%、22.2%和14.8%)。超表达OsCOIN水稻中,OsLti6b、OsNAC6和OsP5CS的表达量明显增加,而OsDhn1和OsDREB1a的表达量明显地降低,OsCDPK7和OsLti6a表达水平未受影响。 上述结果表明OsCOIN基因的过量表达抑制了OsDhn1和OsDREB1a的表达,促进了OsLti6b、OsNAC6和OsP5CS的表达。OsCOIN基因参与的低温响应途径与ABA相关,OsCOIN超表达植株不仅能耐低温,而且对盐和干旱胁迫有一定的抗性。