992 resultados para Helix-distorting lesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 10-yr-old female Asian small-clawed otter (Aonyx cinerea) presented with a history of right forelimb lameness. Antebrachial radiographs revealed a Monteggia lesion, classified by cranial radial head luxation and distal diaphyseal ulnar fracture. Open reduction with placement of an ulnar-radial positional screw was performed. The lateral collateral ligament was reconstructed using suture anchored by a condylar screw and bone tunnel in the radius. Reduction and proper implant placement was confirmed on postoperative radiographs. The ulnar-radial positional screw was removed 6 wk postoperatively to allow proper supination and pronation. Limb function was greatly improved at this time; however, a mild lameness was still observed. At 7 mo postoperatively, the otter was ambulating lameness-free. Radiographs documented proper joint reduction and stable condylar screw. At 32 mo postoperatively, the otter continued to exhibit normal ambulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell growth and differentiation are complex and well-organized processes in which cells respond to stimuli from the environment by carrying out genetic programs. Transcription factors with helix-loop-helix (HLH) motif play critical roles in controlling the expression of genes involved in lineage commitment, cell fate determination, proliferation and tumorigenesis. This study has examined the roles of GCIP (CCNDBP1) in cell differentiation and tumorigenesis. GCIP is a recently identified HLH-leucine zipper protein without a basic region like the Id family of proteins. However, GCIP shares little sequence homology with the Id proteins and has domains with high acidic amino acids and leucine-rich regions following the HLH domain like c-Myc. Here we firstly demonstrate that GCIP is a transcription regulator related to muscle differentiation program. Overexpression of GCIP in C2C12 cells not only promotes myotube formation but also upregulates myogenic differentiation biomarkers, including MHC and myogenein. On the other hand, our finding also suggests that GCIP is a potential tumor suppressor related to cell cycle control. Expression of GCIP was significantly down-regulated in colon tumors as compared to normal colon tissues. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation on soft agar assays while silencing of GCIP expression by siRNA can promote cell proliferation and colony formation. In addition, results from transgenic mice specifically expressing GCIP in liver also support the idea that GCIP is involved in the early stage of hepatocarcinogenesis and decreased susceptibility to chemical hepatocarcinogenesis. ^