973 resultados para Helium
Resumo:
"Issued June 30, 1961."
Resumo:
"Contract AT(30-1)-2789."
Resumo:
Includes bibliographical references.
Resumo:
"Contract no. AF 33(616)-7661, Project no. 7064, Task no. 70169."
Resumo:
Bibliography: p. 13-14.
Resumo:
Supplementary ed. of NBS technical note 154 "and presents the same data in the dimensional units of the British system."
Resumo:
Thesis (doctoral)--
Resumo:
We have investigated the evolution of radiation damage and changes in hardness of sputter-deposited Cu/V nanolaminates upon room temperature helium ion irradiation. As the individual layer thickness decreases from 200 to 5 nm, helium bubble density and radiation hardening both decrease. The magnitude of radiation hardening becomes negligible for individual layer thickness of 2.5 nm or less. These observations indicate that nearly immiscible Cu/V interface can effectively absorb radiation-induced point defects and reduce their concentrations.
Resumo:
Helium ion-irradiation experiments have been performed in single layer Cu films, Nb films and Cu/Nb multilayer films with layer thickness varying from 2.5 nm to 100 nm each layer. Peak helium concentration approaches a few atomic percent with 6-9 displacement-per-atom in Cu and Nb. He bubbles were observed in single layer Cu and Nb films, as well as in Cu 100 nm/Nb 100 nm multilayers with helium bubbles aligned along layer interfaces. Helium bubbles are not resolved via transmission electron microscopy in Cu 2.5 nm/Nb 2.5 nm multilayers. These studies indicate that layer interface may play an important role in annihilating ion-irradiation induced defects such as vacancies and interstitials and have implications in improving the radiation tolerance of metallic materials using nanostructured multilayers. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The concentrations of tritium (3H) and helium isotopes (3He and4He) were used as tracers of groundwater flow in the surficial aquifer system (SAS) beneath Everglades National Park (ENP), south Florida. From ages determined by 3H/3He dating techniques, groundwater within the upper 28 m originated within the last 30 years. Below 28 m, waters originated prior to 30 years before present with evidence of mixing at the interface. Interannual variation of the 3H/3He ages within the upper 28 m was significant throughout the 3 year investigation, corresponding with varying hydrologic conditions. In the region of Taylor Slough Bridge, younger groundwater was consistently detected below older groundwater in the Biscayne Aquifer, suggesting preferential flow to the lower part of the aquifer. An increase in 4He with depth in the SAS indicated that radiogenic 4He produced in the underlying Hawthorn Group migrates into the SAS by diffusion. Higher Δ4He values in brackish groundwaters compared to fresh waters from similar depths suggested a possible enhanced vertical transport of4He in the seawater mixing zone. Groundwater salinity measurements indicated the presence of a wide (6–28 km) seawater mixing zone. Comparison of groundwater levels with surface water levels in this zone indicated the potential for brackish groundwater discharge to the overlying Everglades surface water.
Resumo:
At four sites in the central equatorial Pacific Ocean the flux of extraterrestrial 3He, determined using the excess 230Th profiling method, is 8 * 10**-13 cm**3 STP/cm**2/ka. This supply rate is constant to within 30%. At these same sites, however, the burial rate of 3He, determined using chronostratigraphic accumulation rates, varies by more than a factor of 3. The lowest burial rates, which occur north of the equator at 1°N, 139°W are lower than the global average rate of supply of extraterrestrial 3He by 20% and indicate that sediment winnowing may have occurred. The highest burial rates, which are recorded at the equator and at 2°S, are higher than the rate of supply of extraterrestrial 3He by 100%, and these provide evidence for sediment focusing. By analyzing several proxies measured in core PC72 sediments spanning the past 450 kyr we demonstrate that periods of maximum burial rates of 230Th, 3He, 10Be, Ti, and barite, with a maximum peak-to-trough amplitude of a factor of 6, take place systematically during glacial time. However, the ratio of any one proxy to another is constant to within 30% over the entire length of the records. Given that each proxy represents a different source (234U decay in seawater, interplanetary dust, upper atmosphere, continental dust, or upper ocean), our preferred interpretation for the covariation is that the climate-related changes in burial rates are driven by changes in sediment focusing.
Resumo:
During Ice Station POLarstern (ISPOL; R.V. Polarstern cruise ANT XXII/2, November 2004-January 2005), hydrographic and tracer observations were obtained in the western Weddell Sea while drifting closely in front of the Larsen Ice Shelf. These observations indicate recently formed Weddell Sea Bottom Water, which contains significant contributions of glacial melt water in its upper part, and High-Salinity Shelf Water in its lower layer. The formation of this bottom water cannot be related to the known sources in the south, the Filchner-Ronne Ice Shelf. We show that this bottom water is formed in the western Weddell Sea, most likely in interaction with the Larsen C Ice Shelf. By applying an Optimum Multiparameter Analysis (OMP) using temperature, salinity, and noble gas observations (helium isotopes and neon), we obtained mean glacial melt-water fractions of about 0.1% in the bottom water. On sections across the Weddell Gyre farther north, melt-water fractions are still on the order of 0.04%. Using chlorofluorocarbons (CFCs) as age tracers, we deduced a mean transit time between the western source and the bottom water found on the slope toward the north (9±3 years). This transit time is larger and the inferred transport rate is small in comparison to previous findings. But accounting for a loss of the initially formed bottom water volume due to mixing and renewal of Weddell Sea Deep Water, a formation rate of 1.1±0.5 Sv in the western Weddell Sea is plausible. This implies a basal melt rate of 35±19 Gt/year or 0.35±0.19 m/year at the Larsen Ice Shelf. This bottom water is shallow enough that it could leave the Weddell Basin through the gaps in the South Scotia Ridge to supply Antarctic Bottom Water. These findings emphasize the role of the western Weddell Sea in deep- and bottom-water formation, particularly in view of changing environmental conditions due to climate variability, which might induce enhanced melting or even decay of ice shelves.
Resumo:
We present a helium isotope record for core TT013-114PC from the central equatorial Pacific (140°W, 4°N, 4432 m water depth) spanning a period of 1 million years. We focus on the time interval from 560 to 800 kyr, largely coinciding with the mid-Pleistocene climate transition (MPT) when the dominant period of the Earth's climate variability shifted from 41 kyr to 100 kyr. The terrigenous 4He concentrations from our study correlate very well with published titanium concentrations in this core strongly supporting the use of terrigenous 4He as a monitor of continental dust. Normalizing titanium and terrigenous 4He concentrations to 3He suggests that the dust supply during the MPT was approximately 30% lower compared to the subsequent period (560-100 kyr). The 3He-normalized barium, aluminum and phosphorus concentrations, trace elements with a predominantly biogenic source in these sediments, are relatively constant. This is in contrast to previous studies that reported an apparent rise of titanium-normalized productivity proxies. Rather than a significant increase in productivity during the MPT, we conclude that the dust flux to the central equatorial Pacific was reduced and that the export productivity was approximately constant during this period of climate reorganization.
Resumo:
Fluid mixing processes and thermal regimes within the Snowcap and Roman Ruins vent sites of the PACMANUS hydrothermal system, Papua New Guinea, were investigated using 3He/4He ratios from fluid inclusions within pyrite and anhydrite and the d18O signature of anhydrite. Depressed 3He/4He ratios of 0.2-6.91RA appear to be caused by significant atmospheric diffusive exchange, whilst He-Ne diffusive fractionation precludes correction using 20Ne. 40Ar/36Ar ratios of 295-310 are elevated above seawater, indicating the majority of argon is seawater derived but with a magmatic component. d18O anhydrite ratios are 6.5 per mil to 11 per mil for Snowcap and 6.4 per mil to 11.9 per mil for Roman Ruins. Using oxygen isotope fractionation factors for the anhydrite-water system, the temperatures calculated assuming isotopic equilibrium at depth are up to 100 °C cooler than fluid inclusion trapping temperatures. It is likely that anhydrite is precipitated rapidly, preventing d18O equilibration. By comparing new d18O values for anhydrite with corresponding published 87Sr/86Sr ratios, seawater is inferred to penetrate deep into the Snowcap system with little conductive heating. A simple fluid mixing model has been constructed whereby the differing venting styles can be explained by a plumbing system at depth which favors delivery of end-member hydrothermal fluid to the high temperature sites.
Resumo:
The direct detection of a stellar system that explodes as a Type Ia supernova (SN Ia) has not yet been successful. Various indirect methods have been used to investigate SN Ia progenitor systems but none have produced conclusive results. A prediction of single-degenerate models is that H- (or He-) rich material from the envelope of the companion star should be swept up by the SN ejecta in the explosion. Seven SNe Ia have been analysed to date looking for signs of H-rich material in their late-time spectra and none were detected. We present results from new late-time spectra of 11 SNe Ia obtained at the Very Large Telescope using XShooter and FORS2. We present the tentative detection of Hα emission for SN 2013ct, corresponding to ∼0.007 M⊙ of stripped/ablated companion star material (under the assumptions of the spectral modelling). This mass is significantly lower than expected for single-degenerate scenarios, suggesting that >0.1 M⊙ of H-rich is present but not observed. We do not detect Hα emission in the other 10 SNe Ia. This brings the total sample of normal SNe Ia with non-detections (<0.001–0.058 M⊙) of H-rich material to 17 events. The simplest explanation for these non-detections is that these objects did not result from the explosion of a CO white dwarf accreting matter from a H-rich companion star via Roche lobe overflow or symbiotic channels. However, further spectral modelling is needed to confirm this. We also find no evidence of He-emission features, but models with He-rich companion stars are not available to place mass limits.