952 resultados para Helicity method, subtraction method, numerical methods, random polarizations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para o projeto de estruturas com perfis de aço formados a frio, é fundamental a compreensão dos fenômenos da instabilidade local e global, uma vez que estes apresentam alta esbeltez e baixa rigidez à torção. A determinação do carregamento crítico e a identificação do modo de instabilidade contribuem para o entendimento do comportamento dessas estruturas. Este trabalho avalia três metodologias para a análise linear de estabilidade de perfis de aço formados a frio isolados, com o objetivo de determinar os carregamentos críticos elásticos de bifurcação e os modos de instabilidade associados. Estritamente, analisa-se perfis de seção U enrijecido e Z enrijecido isolados, de diversos comprimentos e diferentes condições de vinculação e carregamento. Determinam-se os carregamentos críticos elásticos de bifurcação e os modos de instabilidade globais e locais por meio de: (i) análise com o Método das Faixas Finitas (MFF), através do uso do programa computacional CUFSM; (ii) análise com elementos finitos de barra baseados na Teoria Generalizada de Vigas (MEF-GBT), via uso do programa GBTUL; e (iii) análise com elementos finitos de casca (MEF-cascas) por meio do uso do programa ABAQUS. Algumas restrições e ressalvas com relação ao uso do MFF são apresentadas, assim como limitações da Teoria Generalizada de Viga e precauções a serem tomadas nos modelos de cascas. Analisa-se também a influência do grau de discretização da seção transversal. No entanto, não é feita avaliação em relação aos procedimentos normativos e tampouco análises não lineares, considerando as imperfeições geométricas iniciais, tensões residuais e o comportamento elastoplástico do material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta uma nova metodologia para elastografia virtual em imagens simuladas de ultrassom utilizando métodos numéricos e métodos de visão computacional. O objetivo é estimar o módulo de elasticidade de diferentes tecidos tendo como entrada duas imagens da mesma seção transversal obtidas em instantes de tempo e pressões aplicadas diferentes. Esta metodologia consiste em calcular um campo de deslocamento das imagens com um método de fluxo óptico e aplicar um método iterativo para estimar os módulos de elasticidade (análise inversa) utilizando métodos numéricos. Para o cálculo dos deslocamentos, duas formulações são utilizadas para fluxo óptico: Lucas-Kanade e Brox. A análise inversa é realizada utilizando duas técnicas numéricas distintas: o Método dos Elementos Finitos (MEF) e o Método dos Elementos de Contorno (MEC), sendo ambos implementados em Unidades de Processamento Gráfico de uso geral, GpGPUs ( \"General Purpose Graphics Units\" ). Considerando uma quantidade qualquer de materiais a serem determinados, para a implementação do Método dos Elementos de Contorno é empregada a técnica de sub-regiões para acoplar as matrizes de diferentes estruturas identificadas na imagem. O processo de otimização utilizado para determinar as constantes elásticas é realizado de forma semi-analítica utilizando cálculo por variáveis complexas. A metodologia é testada em três etapas distintas, com simulações sem ruído, simulações com adição de ruído branco gaussiano e phantoms matemáticos utilizando rastreamento de ruído speckle. Os resultados das simulações apontam o uso do MEF como mais preciso, porém computacionalmente mais caro, enquanto o MEC apresenta erros toleráveis e maior velocidade no tempo de processamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse trabalho constitui o desenvolvimento da modelagem térmica e simulação por métodos numéricos de dois componentes fundamentais do ciclo de refrigeração por absorção de calor com o par amônia/água: o absorvedor e o gerador. A função do absorvedor é produzir mistura líquida com alta fração mássica de amônia a partir de mistura líquida com baixa fração mássica de amônia e mistura vapor mediante retirada de calor. A função do gerador é produzir mistura líquido/vapor a partir de mistura líquida mediante o fornecimento de calor. É proposto o uso da tecnologia de filmes descendentes sobre placas inclinadas e o método de diferenças finitas para dividir o comprimento da placa em volumes de controle discretos e realizar os balanços de massa, espécie de amônia e energia juntamente com as equações de transferência de calor e massa para o filme descendente. O objetivo desse trabalho é obter um modelo matemático simplificado para ser utilizado em controle e otimização. Esse modelo foi utilizado para calcular as trocas de calor e massa no absorvedor e gerador para diversas condições a partir de dados operacionais, tais como: dimensões desses componentes, ângulo de inclinação da placa, temperatura de superfície e condições de entrada da fase líquida e vapor. Esses resultados foram utilizados para estabelecer relações de causa e efeito entre as variáveis e parâmetros do problema. Os resultados mostraram que o ângulo de inclinação da placa ótimo tanto para o absorvedor como para o gerador é a posição vertical, ou 90°. A posição vertical proporciona o menor comprimento de equilíbrio (0,85 m para o absorvedor e 1,27 m para o gerador com as condições testadas) e se mostrou estável, pois até 75° não foram verificadas variações no funcionamento do absorvedor e gerador. Dentre as condições testadas para uma placa de 0,5 m verificou-se que as maiores efetividades térmicas no absorvedor e gerador foram respectivamente 0,9 e 0,7 e as maiores efetividades mássicas no absorvedor e gerador foram respectivamente 0,6 e 0,5. É esperado que os dados obtidos sejam utilizados em trabalhos futuros para a construção de um protótipo laboratorial e na validação do modelo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is supported by the Hungarian Scientific Research Fund (OTKA), grant T042706.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproducing Kernel Hilbert Space (RKHS) and Reproducing Transformation Methods for Series Summation that allow analytically obtaining alternative representations for series in the finite form are developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a numerical design approach has been proposed and developed based on the transmission matrix method in order to characterize periodic and quasi-periodic photonic structures in silicon-on-insulator. The approach and its performance have been extensively tested with specific structures in 2D and its validity has been verified in 3D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algorithms for concept drift handling are important for various applications including video analysis and smart grids. In this paper we present decision tree ensemble classication method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with îriginal random forest with incorporated replace-the-looser forgetting andother state-of-the-art concept-drift classiers like AWE2.