970 resultados para Heart-rate Patterns
Resumo:
OBJECTIVE - Studies have shown that therapy with beta-blockers reduces mortality in patients with heart failure. However, there are no studies describing the effects of propranolol on the QT dispersion in this population. The objective of this study was to assess the electrophysiological profile, mainly QT dispersion, of patients with heart failure regularly using propranolol. METHODS - Fifteen patients with heart failure and using propranolol were assessed over a period of 12 months. Twelve-lead electrocardiograms (ECG) were recorded prior to the onset of beta-blocker therapy and after 3 months of drug use. RESULTS - A significant reduction in heart rate, in QT dispersion and in QTc dispersion was observed, as was also an increase in the PR interval and in the QT interval, after the use of propranolol in an average dosage of 100 mg/day. CONCLUSION - Reduction in QT dispersion in patients with heart failure using propranolol may explain the reduction in the risk of sudden cardiac death with beta-blocker therapy, in this specific group of patients.
Resumo:
OBJECTIVE - To identify, the anaerobic threshold and respiratory compensation point in patients with heart failure. METHODS - The study comprised 42 Men,divided according to the functional class (FC) as follows: group I (GI) - 15 patients in FC I; group II (GII) - 15 patients in FC II; and group III (GIII) - 12 patients in FC III. Patients underwent a treadmill cardiopulmonary exercise test, where the expired gases were analyzed. RESULTS - The values for the heart rate (in bpm) at the anaerobic threshold were the following: GI, 122±27; GII, 117±17; GIII, 114±22. At the respiratory compensation point, the heart rates (in bpm) were as follows: GI, 145±33; GII, 133±14; GIII 123±22. The values for the heart rates at the respiratory compensation point in GI and GIII showed statistical difference. The values of oxygen consumption (VO2) at the anaerobic threshold were the following (in ml/kg/min): GI, 13.6±3.25; GII, 10.77±1.89; GIII, 8.7±1.44 and, at the respiratory compensation point, they were as follows: GI, 19.1±2.2; GII, 14.22±2.63; GIII, 10.27±1.85. CONCLUSION - Patients with stable functional class I, II, and III heart failure reached the anaerobic threshold and the respiratory compensation point at different levels of oxygen consumption and heart rate. The role played by these thresholds in physical activity for this group of patients needs to be better clarified.
Resumo:
OBJECTIVE: To assess the effects of carvedilol in patients with idiopathic dilated cardiomyopathy. METHODS: In a double-blind randomized placebo-controlled study, 30 patients (7 women) with functional class II and III heart failure were assessed. Their ages ranged from 28 to 66 years (mean of 43±9 years), and their left ventricular ejection fraction varied from 8% to 35%. Carvedilol was added to the usual therapy of 20 patients; placebo was added to the usual therapy of 10 patients. The initial dose of carvedilol was 12.5 mg, which was increased weekly until it reached 75 mg/day, according to the patient's tolerance. Clinical assessment, electrocardiogram, echocardiogram, and radionuclide ventriculography were performed in the pretreatment phase, being repeated after 2 and 6 months of medication use. RESULTS: A reduction in heart rate (p=0.016) as well as an increase in left ventricular shortening fraction (p=0.02) and in left ventricular ejection fraction (p=0.017) occurred in the group using carvedilol as compared with that using placebo. CONCLUSION: Carvedilol added to the usual therapy for heart failure resulted in better heart function.
Resumo:
OBJECTIVE: To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical/hemodynamic classification. METHODS: We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical/hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram/echocardiogram), 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram), 14 patients in group II (abnormal electrocardiogram/echocardiogram, without congestive heart failure), and 12 patients in group III (abnormal electrocardiogram/echocardiogram with congestive heart failure). The following variables were analyzed: oxygen consumption (V O2), carbon dioxide production (V CO2), gas exchange rate (R), inspiratory current volume (V IC), expiratory current volume (V EC), respiratory frequency, minute volume (V E), heart rate (HR), maximum load, O2 pulse, and ventilatory anaerobic threshold (AT). RESULTS: When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2peak, V CO2peak, V ICpeak, V ECpeak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. CONCLUSION: The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.
Resumo:
OBJECTIVE: To analyze the heart rate variability in patients with mild to moderate systemic arterial hypertension. METHODS: Thirty-two healthy (group I) and 70 systemic arterial hypertensive (group II) individuals, divided according to age (40 to 59 and 60 to 80 years old, respectively) and with a similar distribution by sex were studied. Thirty-one had left ventricular hypertrophy (LVH), 22 were overweight, and 16 had Type II diabetes mellitus. Smoking, alcohol ingestion, and sedentary habits were the same between groups. Variability in heart rate was analyzed in the time domain, using standard deviations of normal RR intervals (SDNN) and the differences between maximal brady- and tachycardia (D-BTmax) during sustained inspiration. Analysis of the frequency band of the power spectrum between 0.05 and 0.40 Hz at rest and during controlled respiration was chosen for analysis of the frequency domain. RESULTS: In both time and frequency domains, variables were lower in group II than in group I. Within groups, statistically significant variables were only found for individuals in the 40 to 59 year old group. The presence of LVH, overweight, or diabetes mellitus did not influence the variability in heart rate to a significant extent. CONCLUSION: Variability in heart rate was a valuable instrument for analyzing autonomic modulation of the heart in arterial hypertension. The autonomic system undergoes significant losses in cardio-modulatory capacity, more evident in subjects between 40 and 59 years old. In those over 60 years old, reduced variability in heart rate imposed by aging was not significantly influenced by the presence of systemic arterial hypertension.
Resumo:
OBJECTIVE: The 6-minute walk test is an way of assessing exercise capacity and predicting survival in heart failure. The 6-minute walk test was suggested to be similar to that of daily activities. We investigated the effect of motivation during the 6-minute walk test in heart failure. METHODS: We studied 12 males, age 45±12 years, ejection fraction 23±7%, and functional class III. Patients underwent the following tests: maximal cardiopulmonary exercise test on the treadmill (max), cardiopulmonary 6-minute walk test with the walking rhythm maintained between relatively easy and slightly tiring (levels 11 and 13 on the Borg scale) (6EB), and cardiopulmonary 6-minute walk test using the usual recommendations (6RU). The 6EB and 6RU tests were performed on a treadmill with zero inclination and control of the velocity by the patient. RESULTS: The values obtained in the max, 6EB, and 6RU tests were, respectively, as follows: O2 consumption (ml.kg-1.min-1) 15.4±1.8, 9.8±1.9 (60±10%), and 13.3±2.2 (90±10%); heart rate (bpm) 142±12, 110±13 (77±9%), and 126±11 (89±7%); distance walked (m) 733±147, 332±66, and 470±48; and respiratory exchange ratio (R) 1.13±0.06, 0.9±0.06, and 1.06±0.12. Significant differences were observed in the values of the variables cited between the max and 6EB tests, the max and 6RU tests, and the 6EB and 6RU tests (p<0.05). CONCLUSION: Patients, who undergo the cardiopulmonary 6-minute walk test and are motivated to walk as much as they possibly can, usually walk almost to their maximum capacity, which may not correspond to that of their daily activities. The use of the Borg scale during the cardiopulmonary 6-minute walk test seems to better correspond to the metabolic demand of the usual activities in this group of patients.
Resumo:
OBJECTIVE: Exercise training programs have been proposed as adjuncts to treatment of heart failure. The effects of a 3-month-exercise-training-program with 3 exercise sessions per week were assessed in patients with stable systolic chronic heart failure. METHODS: We studied 24 patients with final left ventricle diastolic diameter of 70±10mm and left ventricular ejection fraction of 37±4%. Mean age was 52±16 years. Twelve patients were assigned to an exercise training group (G1), and 12 patients were assigned to a control group (G2). Patients underwent treadmill testing, before and after exercise training, to assess distance walked, heart rate, systolic blood pressure, and double product. RESULTS: In G2 group, before and after 3 months, we observed, respectively distance walked, 623±553 and 561± 460m (ns); peak heart rate, 142±23 and 146± 33b/min (ns); systolic blood pressure, 154±36 and 164±26 mmHg (ns); and double product, 22211± 6454 and 24293±7373 (ns). In G1 group, before and after exercise, we observed: distance walked, 615±394 and 970± 537m (p<0.003) peak heart rate, 143±24 and 143±29b/min (ns); systolic blood pressure, 136±33 and 133±24 mmHg (ns); and double product, 19907± 7323 and 19115±5776, respectively. Comparing the groups, a significant difference existed regarding the variation in the double product, and in distance walked. CONCLUSION: Exercise training programs in patients with heart failure can bring about an improvement in physical capacity.
Lowering Pulmonary Wedge Pressure after Heart Transplant: Pulmonary Compliance and Resistance Effect
Resumo:
AbstractBackground:Right ventricular (RV) afterload is an important risk factor for post-heart transplantation (HTx) mortality, and it results from the interaction between pulmonary vascular resistance (PVR) and pulmonary compliance (CPA). Their product, the RC time, is believed to be constant. An exception is observed in pulmonary hypertension because of elevated left ventricular (LV) filling pressures.Objective:Using HTx as a model for chronic lowering of LV filling pressures, our aim was to assess the variations in RV afterload components after transplantation.Methods:We retrospectively studied 159 patients with right heart catheterization before and after HTx. The effect of Htx on hemodynamic variables was assessed.Results:Most of the patients were male (76%), and the mean age was 53 ± 12 years. HTx had a significant effect on the hemodynamics, with normalization of the LV and RV filling pressures and a significant increase in cardiac output and heart rate (HR). The PVR decreased by 56% and CPA increased by 86%. The RC time did not change significantly, instead of increasing secondary to pulmonary wedge pressure (PWP) normalization after HTx as expected. The expected increase in RC time with PWP lowering was offset by the increase in HR (because of autonomic denervation of the heart). This effect was independent from the decrease of PWP.Conclusion:The RC time remained unchanged after HTx, notwithstanding the fact that pulmonary capillary wedge pressure significantly decreased. An increased HR may have an important effect on RC time and RV afterload. Studying these interactions may be of value to the assessment of HTx candidates and explaining early RV failure after HTx.
Resumo:
Background: Exercise is essential for patients with heart failure as it leads to a reduction in morbidity and mortality as well as improved functional capacity and oxygen uptake (v̇O2). However, the need for an experienced physiologist and the cost of the exam may render the cardiopulmonary exercise test (CPET) unfeasible. Thus, the six-minute walk test (6MWT) and step test (ST) may be alternatives for exercise prescription. Objective: The aim was to correlate heart rate (HR) during the 6MWT and ST with HR at the anaerobic threshold (HRAT) and peak HR (HRP) obtained on the CPET. Methods: Eighty-three patients (58 ± 11 years) with heart failure (NYHA class II) were included and all subjects had optimized medication for at least 3 months. Evaluations involved CPET (v̇O2, HRAT, HRP), 6MWT (HR6MWT) and ST (HRST). Results: The participants exhibited severe ventricular dysfunction (ejection fraction: 31 ± 7%) and low peak v̇O2 (15.2 ± 3.1 mL.kg-1.min-1). HRP (113 ± 19 bpm) was higher than HRAT (92 ± 14 bpm; p < 0.05) and HR6MWT (94 ± 13 bpm; p < 0.05). No significant difference was found between HRP and HRST. Moreover, a strong correlation was found between HRAT and HR6MWT (r = 0.81; p < 0.0001), and between HRP and HRST (r = 0.89; p < 0.0001). Conclusion: These findings suggest that, in the absence of CPET, exercise prescription can be performed by use of 6MWT and ST, based on HR6MWT and HRST
Resumo:
Background: Heart failure prediction after acute myocardial infarction may have important clinical implications. Objective: To analyze the functional echocardiographic variables associated with heart failure in an infarction model in rats. Methods: The animals were divided into two groups: control and infarction. Subsequently, the infarcted animals were divided into groups: with and without heart failure. The predictive values were assessed by logistic regression. The cutoff values predictive of heart failure were determined using ROC curves. Results: Six months after surgery, 88 infarcted animals and 43 control animals were included in the study. Myocardial infarction increased left cavity diameters and the mass and wall thickness of the left ventricle. Additionally, myocardial infarction resulted in systolic and diastolic dysfunction, characterized by lower area variation fraction values, posterior wall shortening velocity, E-wave deceleration time, associated with higher values of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among the infarcted animals, 54 (61%) developed heart failure. Rats with heart failure have higher left cavity mass index and diameter, associated with worsening of functional variables. The area variation fraction, the E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate were functional variables predictors of heart failure. The cutoff values of functional variables associated with heart failure were: area variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time < 42.11 and isovolumic relaxation time adjusted by heart rate < 69.08. Conclusion: In rats followed for 6 months after myocardial infarction, the area variation fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate are predictors of heart failure onset.
Resumo:
Abstract Background: More than 50% of the patients with heart failure have normal ejection fraction (HFNEF). Iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy and cardiopulmonary exercise test (CPET) are prognostic markers in HFNEF. Nebivolol is a beta-blocker with vasodilating properties. Objectives: To evaluate the impact of nebivolol therapy on CPET and123I-MIBG scintigraphic parameters in patients with HFNEF. Methods: Twenty-five patients underwent 123I-MIBG scintigraphy to determine the washout rate and early and late heart-to-mediastinum ratios. During the CPET, we analyzed the systolic blood pressure (SBP) response, heart rate (HR) during effort and recovery (HRR), and oxygen uptake (VO2). After the initial evaluation, we divided our cohort into control and intervention groups. We then started nebivolol and repeated the tests after 3 months. Results: After treatment, the intervention group showed improvement in rest SBP (149 mmHg [143.5-171 mmHg] versus 135 mmHg [125-151 mmHg, p = 0.016]), rest HR (78 bpm [65.5-84 bpm] versus 64.5 bpm [57.5-75.5 bpm, p = 0.028]), peak SBP (235 mmHg [216.5-249 mmHg] versus 198 mmHg [191-220.5 mmHg], p = 0.001), peak HR (124.5 bpm [115-142 bpm] versus 115 bpm [103.7-124 bpm], p= 0.043), HRR on the 1st minute (6.5 bpm [4.75-12.75 bpm] versus 14.5 bpm [6.7-22 bpm], p = 0.025) and HRR on the 2nd minute (15.5 bpm [13-21.75 bpm] versus 23.5 bpm [16-31.7 bpm], p = 0.005), but no change in peak VO2 and 123I-MIBG scintigraphic parameters. Conclusion: Despite a better control in SBP, HR during rest and exercise, and improvement in HRR, nebivolol failed to show a positive effect on peak VO2 and 123I-MIBG scintigraphic parameters. The lack of effect on adrenergic activity may be the cause of the lack of effect on functional capacity.
Resumo:
L-Type Ca(2+) and K(ATP) Channels in Pacing-Induced Cardioprotection. AIMS: The L-type Ca(2+) channel, the sarcolemmal (sarcK(ATP)), and mitochondrial K(ATP) (mitoK(ATP)) channels are involved in myocardial preconditioning. We aimed at determining to what extent these channels can also participate in pacing-induced cardioprotection. METHODS: Hearts of 4-day-old chick embryos were paced in ovo during 12 hour using asynchronous intermittent ventricular stimulation at 110% of the intrinsic rate. Sham operated and paced hearts were then submitted in vitro to anoxia (30 minutes) and reoxygenation (60 minutes). These hearts were exposed to L-type Ca(2+) channel agonist Bay-K-8644 (BAY-K) or blocker verapamil, nonselective K(ATP) channel antagonist glibenclamide (GLIB), mitoK(ATP) channel agonist diazoxide (DIAZO), or antagonist 5-hydroxydecanoate. Electrocardiogram, electromechanical delay (EMD) reflecting excitation-contraction (E-C) coupling, and contractility were determined. RESULTS: Under normoxia, heart rate, QT duration, conduction, EMD, and ventricular shortening were similar in sham and paced hearts. During reoxygenation, arrhythmias ceased earlier and ventricular EMD recovered faster in paced hearts than in sham hearts. In sham hearts, BAY-K (but not verapamil), DIAZO (but not 5-hydroxydecanoate) or GLIB accelerated recovery of ventricular EMD, reproducing the pacing-induced protection. By contrast, none of these agents further ameliorated recovery of the paced hearts. CONCLUSION: The protective effect of chronic asynchronous pacing at near physiological rate on ventricular E-C coupling appears to be associated with subtle activation of L-type Ca(2+) channel, inhibition of sarcK(ATP) channel, and/or opening of mitoK(ATP) channel.
Resumo:
Atrial natriuretic peptides (ANP) exert vasodilating and natriuretic actions. The present study was undertaken to test the effect of low dose infusions of synthetic ANP on hemodynamic and humoral variables of patients with severe heart failure. Eight patients, aged 26 to 71 years, with severe congestive heart failure due to ischemic heart disease or idiopathic dilated cardiomyopathy were included in the study. Synthetic human (3-28) ANP was infused at doses ranging from 0.5 to 2 micrograms/min for up to 3 h. Pulmonary capillary wedge pressure fell from 24 +/- 1 to 16 +/- 2 mm Hg (mean +/- SEM) (p less than 0.01) and cardiac index tended to rise from 2 +/- 0.2 to 2.3 +/- 0.2 L/min/m2 (NS), while blood pressure and heart rate did not change. One patient experienced a marked drop in pulmonary capillary wedge and arterial blood pressure that necessitated the administration of saline. ANP infusion did not alter plasma renin activity or plasma aldosterone, norepinephrine, or vasopressin levels. It decreased plasma epinephrine levels from 0.472 +/- 0.077 to 0.267 +/- 0.024 nmol/L (p less than 0.05). Plasma ANP levels were markedly elevated in all patients before initiating the infusion. They had no predictive value for the hemodynamic response to exogenous ANP. No correlation was observed between the hemodynamic effects of ANP and those induced by the subsequently administered converting enzyme inhibitor captopril, which seemed to improve cardiac function more consistently.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.