922 resultados para Health Effects


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To investigate the association between common carotid artery intima-media thickness (cIMT) and exposure to secondhand smoke (SHS) in children. Methods: Data were available at baseline in the Quebec Adiposity and Lifestyle investigation in Youth (QUALITY) study, an ongoing longitudinal investigation of Caucasian children aged 8e10 years at cohort inception, who had at least one obese parent. Data on exposure to parents, siblings and friends smoking were collected in interviewer-administered child, and self-report parent questionnaires. Blood cotinine was measured with a high sensitivity ELISA. cIMTwas measured by ultrasound. The association between blood cotinine and cIMT was investigated in multivariable linear regression analyses controlling for age, body mass index, and child smoking status. Results: Mean (SD) cIMT (0.5803 (0.04602)) did not differ across age or sex. Overall 26%, 6% and 3% of children were exposed to parents, siblings and friends smoking, respectively. Cotinine ranged from 0.13 ng/ml to 7.38 ng/ml (median (IQR)¼0.18 ng/ml)). Multivariately, a 1 ng/ml increase in cotinine was associated with a 0.090 mm increase in cIMT (p¼0.034). Conclusion: In children as young as age 8e10 years, exposure to SHS relates to cIMT, a marker of pre-clinical atherosclerosis. Given the wide range of health effects of SHS, increased public health efforts are needed to reduced exposure among children in homes an private vehicles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Exposure to particles (PM) induces adverse health effects (cancer, cardiovascular and pulmonary diseases). A key-role in these adverse effects seems to be played by oxidative stress, which is an excess of reactive oxygen species relative to the amount of reducing species (including antioxidants), the first line of defense against reactive oxygen species. The aim of this study was to document the oxidative stress caused by exposure to respirable particles in vivo, and to test whether exposed workers presented changes in their urinary levels for reducing species.METHODS: Bus depot workers (n = 32) exposed to particles and pollutants (respirable PM4, organic and elemental carbon, particulate metal content, polycyclic aromatic hydrocarbons, NOx, O3) were surveyed over two consecutive days. We collected urine samples before and after each shift, and quantified an oxidative stress biomarker (8-hydroxy-2'-deoxyguanosine), the reducing capacity and a biomarker of PAH exposure (1-hydroxypyrene). We used a linear mixed model to test for associations between the oxidative stress status of the workers and their particle exposure as well as with their urinary level of reducing species.RESULTS: Workers were exposed to low levels of respirable PM4 (range 25-71 μg/m3). However, urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly within each shift and between both days for non-smokers. The between-day increase was significantly correlated (p < 0.001) with the concentrations of organic carbon, NOx, and the particulate copper content. The within-shift increase in 8OHdG was highly correlated to an increase of the urinary reducing capacity (Spearman ρ = 0.59, p < 0.0001).CONCLUSIONS: These findings confirm that exposure to components associated to respirable particulate matter causes a systemic oxidative stress, as measured with the urinary 8OHdG. The strong association observed between urinary 8OHdG with the reducing capacity is suggestive of protective or other mechanisms, including circadian effects. Additional investigations should be performed to understand these observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Working conditions are important determinants of health. The aims of this article are to 1) identify working conditions and work characteristics that are associated with workers' perceptions that their work is harmful to their health and 2) identify with what symptoms these working conditions are associated.We used the Swiss dataset from the 2005 edition of the European Working Conditions Survey. The dependent variable was based on the question "Does your work affect your health?". Logistic regression was used to identify a set of variables collectively associated with self-reported work-related adverse health effects.A total of 330 (32%) participants reported having their health affected by work. The most frequent symptoms included backache (17.1%), muscular pains (13.1%), stress (18.3%) and overall fatigue (11.7%). Scores for self-reported exposure to physicochemical risks, postural and physical risks, high work demand, and low social support were all significantly associated with workers' perceptions that their work is harmful to their health, regardless of gender or age. A high level of education was associated with stress symptoms, and reports that health was affected by work was associated with low job satisfaction.Many workers believe that their work affects their health. Health specialists should pay attention to the potential association between work and their patients' health complaints. This is particularly relevant when patients mention symptoms such as muscular pains, backache, overall fatigue, and stress. Specific attention should be given to complaints of stress in highly educated workers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past decade, many studies have been conducted to determine the health effects induced by exposure to engineered nanomaterials (NMs). Specifically for exposure via inhalation, numerous in vitro and animal in vivo inhalation toxicity studies on several types of NMs have been published. However, these results are not easily extrapolated to judge the effects of inhaling NMs in humans, and few published studies on the human response to inhalation of NMs exist. Given the emergence of more industries utilizing iron oxide nanoparticles as well as more nanomedicine applications of superparamagnetic iron oxide nanoparticles (SPIONs), this review presents an overview of the inhalation studies that have been conducted in humans on iron oxides. Both occupational exposure studies on complex iron oxide dusts and fumes, as well as human clinical studies on aerosolized, micron-size iron oxide particles are discussed. Iron oxide particles have not been described to elicit acute inhalation response nor promote lung disease after chronic exposure. The few human clinical studies comparing inhalation of fine and ultrafine metal oxide particles report no acute changes in the health parameters measured. Taken together existing evidence suggests that controlled human exposure to iron oxide nanoparticles, such as SPIONs, could be conducted safely.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of high resolution accurate mass spectrometry (HRMS) operating in full scan MS mode was investigated for the quantitative determination of amoxicillin (AMX) as well as qualitative analysis of metabolomic profiles in tissues of medicated chickens. The metabolomic approach was exploited to compile analytical information on changes in the metabolome of muscle, kidney and liver from chickens subjected to a pharmacological program with AMX. Data consisting of m/z features taken throughout the entire chromatogram were extracted and filtered to be treated by Principal Component Analysis. As a result, it was found that medicated and non-treated animals were clearly clustered in distinct groups. Besides, the multivariate analysis revealed some relevant mass features contributing to this separation. In this context, recognizing those potential markers of each chicken class was a priority research for both metabolite identification and, obviously, evaluation of food quality and health effects associated to food consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manufactured nanoparticles are introduced into industrial processes, but they are suspected to cause similar negative health effects as ambient particles. The poor knowledge about the scale of this introduction did not allow global risk analysis so far. In 2006 a targeted telephone survey among Swiss companies (1) showed the usage of nanoparticles in a few selected companies but did not provide data to extrapolate on the totality of the Swiss workforce. To gain this kind of information a layered representative questionnaire survey among 1'626 Swiss companies was conducted in 2007. Data was collected about the number of potentially exposed persons in the companies and their protection strategy. The response rate was 58.3%. An expected number of 586 companies (95%−confidence interval 145 to 1'027) was shown by this study to use nanoparticles in Switzerland. Estimated 1'309 (1'073 to 1'545) workers do their job in the same room as a nanoparticle application. Personal protection was shown to be the predominant type of protection means. Companies starting productions with nanomaterials need to consider incorporating protection measures into the plans. This will not only benefit the workers' health, but will also likely increase the competitiveness of the companies. Technical and organisational protection means are not only more cost−effective on the long term, but are also easier to control. Guidelines may have to be designed specifically for different industrial applications, including fields outside nanotechnology, and adapted to all sizes of companies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To assess nutrition trends of the Geneva population for the period 1999-2009. DESIGN: Bus Santé Geneva study, which conducts annual health surveys in random samples of the Geneva population. Dietary intake was assessed using a validated FFQ and trends were assessed by linear regression. SETTING: Population-based survey. SUBJECTS: Data from 9283 participants (50% women, mean age 51·5 (sd 10·8) years) were analysed. RESULTS: In both genders total energy intake decreased from 1999 to 2009, by 2·9% in men and by 6·3% in women (both trends P < 0·005). Vegetable protein and total carbohydrate intakes, expressed as a percentage of total energy intake, increased in women. MUFA intake increased while SFA, PUFA and alcohol intakes decreased in both genders. Intakes of Ca, Fe and carotene decreased in both genders. No changes in fibre, vitamin D and vitamin A intakes were found. Similar findings were obtained after excluding participants with extreme dietary intakes, except that the decreases in SFA, vegetable protein and carbohydrate were no longer significant in women. CONCLUSIONS: Between 1999 and 2009, a small decrease in total energy intake was noted in the Geneva population. Although the decrease in alcohol and SFA intakes is of interest, the decrease in Ca and Fe intakes may have adverse health effects in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Professional cleaning is a basic service occupation with a wide variety of tasks carried out in all kind of different sectors and workplaces by a large workforce. One important risk for cleaning workers is the exposure to chemical substances that are present in cleaning products.Monoethanolamine was found to be often present in cleaning products such as general purpose cleaners, bathroom cleaners, floor cleaners and kitchen cleaners. Monoethanolamine can injure the skin, and exposure to monoethanolamine was associated to asthma even when the air concentrations were low. It is a strong irritant and known to be involved in sensitizing mechanisms. It is very likely that the use of cleaning products containing monoethanolamine gives rise to respiratory and dermal exposures. Therefore there is a need to further investigate the exposures to monoethanolamine for both, respiratory and dermal exposure.The determination of monoethanolamine has traditionally been difficult and analytical methods available are little adapted for occupational exposure assessments. For monoethanolamine air concentrations, a sampling and analytical method was already available and could be used. However, a method to analyses samples for skin exposure assessments as well as samples of skin permeation experiments was missing. Therefore one main objective of this master thesis was to search an already developed and described analytical method for the measurement of monoethanolamine in water solutions, and to set it up in the laboratory. Monoethanolamine was analyzed after a derivatisation reaction with o-pthtaldialdehyde. The derivated fluorescing monoethanolamine was then separated with high performance liquid chromatography and detection took place with a fluorescent detector. The method was found to be suitable for qualitative and quantitative analysis of monoethanolamine. An exposure assessment was conducted in the cleaning sector to measure the respiratory and dermal exposures to monoethanolamine during floor cleaning. Stationary air samples (n=36) were collected in 8 companies and samples for dermal exposures (n=12) were collected in two companies. Air concentrations (Mean = 0.18 mg/m3, Standard Deviation = 0.23 mg/m3, geometric Mean = 0.09 mg/m3, Geometric Standard Deviation = 3.50) detected were mostly below 1/10 of the Swiss 8h time weighted average occupational exposure limit. Factors that influenced the measured monoethanolamine air concentrations were room size, ventilation system and the concentration of monoethanolamine in the cleaning product and amount of monoethanolamine used. Measured skin exposures ranged from 0.6 to 128.4 mg/sample. Some cleaning workers that participated in the skin exposure assessment did not use gloves and had direct contact with the solutions containing the cleaning product and monoethanolamine. During the entire sampling campaign, cleaning workers mostly did not use gloves. Cleaning workers are at risk to be regularly exposed to low air concentrations of monoethanolamine. This exposure may be problematic if a worker suffers from allergic reactions (e.g. Asthma). In that case a substitution of the cleaning product may be a good prevention measure as several different cleaning products are available for similar cleaning tasks. Currently there are no occupational exposure limits to compare the skin exposures that were found. To prevent skin exposures, adaptations of the cleaning techniques and the use of gloves should be considered. The simultaneous skin and airborne exposures might accelerate adverse health effects. Overall the risks caused by exposures to monoethanolamine are considered as low to moderate when the cleaning products are used correctly. Whenever possible, skin exposures should be avoided. Further research should consider especially the dermal exposure routes, as very high exposures might occur by skin contact with cleaning products. Dermatitis but also sensitization might be caused by skin exposures. In addition, new biomedical insights are needed to better understand the risks of the dermal exposure. Therefore skin permeability experiments should be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airborne particles can come from a variety of sources and contain variable chemical constituents. Some particles are formed by natural processes, such as volcanoes, erosion, sea spray, and forest fires, while other are formed by anthropogenic processes, such as industrial- and motor vehicle-related combustion, road-related wear, and mining. In general, larger particles (those greater than 2.5 μm) are formed by mechanical processes, while those less than 2.5 μm are formed by combustion processes. The chemical composition of particles is highly influenced by the source: for combustion-related particles, factors such as temperature of combustion, fuel type, and presence of oxygen or other gases can also have a large impact on PM composition. These differences can often be observed at a regional level, such as the greater sulphate-composition of PM in regions that burn coal for electricity production (which contains sulphur) versus regions that do not. Most countries maintain air monitoring networks, and studies based on the resulting data are the most common basis for epidemiology studies on the health effects of PM. Data from these monitoring stations can be used to evaluate the relationship between community-level exposure to ambient particles and health outcomes (i.e., morbidity or mortality from various causes). Respiratory and cardiovascular outcomes are the most commonly assessed, although studies have also considered other related specific outcomes such as diabetes and congenital heart disease. The data on particle characteristics is usually not very detailed and most often includes some combination of PM2.5, PM10, sulphate, and NO2. Other descriptors that are less commonly found include particle number (ultrafine particles), metal components of PM, local traffic intensity, and EC/OC. Measures of association are usually reported per 10 μg/m3 or interquartile range increase in pollutant concentration. As the exposure data are taken from regional monitoring stations, the measurements are not representative of an individual's exposure. Particle size is an important descriptor for understanding where in the human respiratory system the particles will deposit: as a general rule, smaller particles penetrate to deeper regions of the lungs. Initial studies on the health effects of particulate matter focused on mass of the particles, including either all particles (often termed total suspended particulate or TSP) or PM10 (all particles with an aerodynamic diameter less than 10 μm). More recently, studies have considered both PM10 and PM2.5, with the latter corresponding more directly to combustion-related processes. UFPs are a dominant source of particles in terms of PNC, yet are negligible in terms of mass. Very few epidemiology studies have measured the effect of UFPs on health; however, the numbers of studies on this topic are increasing. In addition to size, chemical composition is of importance when understanding the toxicity of particles. Some studies consider the composition of particles in addition to mass; however this is not common, in part due the cost and labour involved in such analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous health benefits have been attributed to cocoa and its derived products in the last decade including antioxidant, anti-platelet and positive effects on lipid metabolism and vascular function. Inflammation plays a key role in the initiation and progression of atherosclerosis. However, cocoa feeding trials focused on inflammation are still rare and the results yielded are controversial. Health effects derived from cocoa consumption have been partly attributed to its polyphenol content, in particular of flavanols. Bioavailability is a key issue for cocoa polyphenols in order to be able to exert their biological activities. In the case of flavanols, bioavailability is strongly influenced by several factors, such as their degree of polymerization and the food matrix in which the polyphenols are delivered. Furthermore, gut has become an active site for the metabolism of procyanidins (oligomeric and polymeric flavanols). Estimation of polyphenol consumption or exposure is also a very challenging task in Food and Nutrition Science in order to correlate the intake of phytochemicals with in vivo health effects. In the area of nutrition, modern analytical techniques based on mass spectrometry are leading to considerable advances in targeted metabolite analysis and particularly in Metabolomics or global metabolite analysis. In this chapter we have summarized the most relevant results of our recent research on the bioavailability of cocoa polyphenols in humans and the effect of the matrix in which cocoa polyphenols are delivered considering both targeted analysis and a metabolomic approach. Furthermore, we have also summarized the effect of long-term consumption of cocoa powder in patients at high risk of cardiovascular disease (CVD) on the inflammatory biomarkers of atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: This study compared frequency of alcohol consumption and binge drinking between young adult childhood cancer survivors and the general population in Switzerland, and assessed its socio-demographic and clinical determinants. PROCEDURE: Childhood cancer survivors aged <16 years when diagnosed 1976-2003, who had survived >5 years and were currently aged 20-40 years received a postal questionnaire. Reported frequency of alcohol use and of binge drinking were compared to the Swiss Health Survey, a representative general population survey. Determinants of frequent alcohol consumption and binge drinking were assessed in a multivariable logistic regression. RESULTS: Of 1,697 eligible survivors, 1,447 could be contacted and 1,049 (73%) responded. Survivors reported more often than controls to consume alcohol frequently (OR = 1.7; 95%CI = 1.3-2.1) and to engage in binge drinking (OR = 2.9; 95%CI = 2.3-3.8). Peak frequency of binge drinking in males occurred at age 24-26 years in survivors, compared to age 18-20 in the general population. Socio-demographic factors (male gender, high educational attainment, French and Italian speaking, and migration background from Northern European countries) were most strongly associated with alcohol consumption patterns among both survivors and controls. CONCLUSIONS: The high frequency of alcohol consumption found in this study is a matter of concern. Our data suggest that survivors should be better informed on the health effects of alcohol consumption during routine follow-up, and that such counseling should be included in clinical guidelines. Future research should study motives of alcohol consumption among survivors to allow development of targeted health interventions for this vulnerable group.