806 resultados para Healing Movement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Vacuum-assisted closure (VAC) has become the preferred modality to treat many complex wounds but could be further improved by methods that minimize bleeding and facilitate wound epithelialization. Short fiber poly-N-acetyl glucosamine nanofibers (sNAG) are effective hemostatic agents that activate platelets and facilitate wound epithelialization. We hypothesized that sNAG used in combination with the VAC device could be synergistic in promoting wound healing while minimizing the risk of bleeding. METHODS: Membranes consisting entirely of sNAG nanofibers were applied immediately to dorsal excisional wounds of db/db mice followed by application of the VAC device. Wound healing kinetics, angiogenesis, and wound-related growth factor expression were measured. RESULTS: The application of sNAG membranes to wounds 24 hours before application of the VAC device was associated with a significant activation of wounds (expression of PDGF, TGFβ, EGF), superior granulation tissue formation rich in Collagen I as well as superior wound epithelialization (8.6% ± 0.3% vs. 1.8% ± 1.1% of initial wound size) and wound contraction. CONCLUSIONS: The application of sNAG fiber-containing membranes before the application of the polyurethane foam interface of VAC devices leads to superior healing in db/db mice and represents a promising wound healing adjunct that can also reduce the risk of bleeding complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review: An overview of recent advances in structural neuroimaging and their impact on movement disorders research is presented. Recent findings: Novel developments in computational neuroanatomy and improvements in magnetic resonance image quality have brought further insight into the pathophysiology of movement disorders. Sophisticated automated techniques allow for sensitive and reliable in-vivo differentiation of phenotype/genotype related traits and their interaction even at presymptomatic stages of disease. Summary: Voxel-based morphometry consistently demonstrates well defined patterns of brain structure changes in movement disorders. Advanced stages of idiopathic Parkinson's disease are characterized by grey matter volume decreases in basal ganglia. Depending on the presence of cognitive impairment, volume changes are reported in widespread cortical and limbic areas. Atypical Parkinsonian syndromes still pose a challenge for accurate morphometry-based classification, especially in early stages of disease progression. Essential tremor has been mainly associated with thalamic and cerebellar changes. Studies on preclinical Huntington's disease show progressive loss of tissue in the caudate and cortical thinning related to distinct motor and cognitive phenotypes. Basal ganglia volume in primary dystonia reveals an interaction between genotype and phenotype such that brain structure changes are modulated by the presence of symptoms under the influence of genetic factors. Tics in Tourette's syndrome correlate with brain structure changes in limbic, motor and associative fronto-striato-parietal circuits. Computational neuroanatomy provides useful tools for in-vivo assessment of brain structure in movement disorders, allowing for accurate classification in early clinical stages as well as for monitoring therapy effects and/or disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS: DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. RESULTS: GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b(+) monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b(+) myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b(+) myeloid cells were shown to promote in vitro wound repair. CONCLUSIONS: Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To analyze the influence of age on retinochoroidal wound healing processes and on glial growth factor and cytokine mRNA expression profiles observed after argon laser photocoagulation. METHODS: A cellular and morphometric study was performed that used 44 C57Bl/6J mice: 4-week-old mice (group I, n=8), 6-week-old mice (group II, n=8), 10-12-week-old mice (group III, n=14), and 1-year-old mice (group IV, n=14). All mice in these groups underwent a standard argon laser photocoagulation (50 microm, 400 mW, 0.05 s). Two separated lesions were created in each retina using a slit lamp delivery system. At 1, 3, 7, 14, 60 days, and 4 months after photocoagulation, mice from each of the four groups were sacrificed by carbon dioxide inhalation. Groups III and IV were also studied at 6, 7, and 8 months after photocoagulation. At each time point the enucleated eyes were either mounted in Tissue Tek (OCT), snap frozen and processed for immunohistochemistry or either flat mounted (left eyes of groups III and IV). To determine, by RT-PCR, the time course of glial fibrillary acidic protein (GFAP), vascular endothelial growth factor (VEGF), and monocyte chemotactic protein-1 (MCP-1) gene expression, we delivered ten laser burns (50 microm, 400 mW, 0.05 s) to each retina in 10-12-week-old mice (group III', n=10) and 1-year-old mice (group IV', n=10). Animals from Groups III' and IV' had the same age than those from Groups III and IV, but they received ten laser impacts in each eye and served for the molecular analysis. Mice from Groups III and IV received only two laser impacts per eye and served for the cellular and morphologic study. Retinal and choroidal tissues from these treated mice were collected at 16 h, and 1, 2, 3, and 7 days after photocoagulation. Two mice of each group did not receive photocoagulation and were used as controls. RESULTS: In the cellular and morphologic study, the resultant retinal pigment epithelium interruption expanse was significantly different between the four groups. It was more concise and smaller in the oldest group IV (112.1 microm+/-11.4 versus 219.1 microm+/-12.2 in group III) p<0.0001 between groups III and IV. By contrast, while choroidal neovascularization (CNV) was mild and not readily identifiable in group I, at all time points studied, CNV was more prominent in the (1-year-old mice) Group IV than in the other groups. For instance, up to 14 days after photocoagulation, CNV reaction was statistically larger in group IV than in group III ((p=0.0049 between groups III and IV on slide sections and p<0.0001 between the same groups on flat mounts). Moreover, four months after photocoagulation, the CNV area (on slide sections) was 1,282 microm(2)+/-90 for group III and 2,999 microm(2)+/-115 for group IV (p<0.0001 between groups III and IV). Accordingly, GFAP, VEGF, and MCP-1 mRNA expression profiles, determined by RT-PCR at 16 h, 1, 2, 3, and 7 days postphotocoagulation, were modified with aging. In 1-year-old mice (group IV), GFAP mRNA expression was already significantly higher than in the younger (10-12 week) group III before photocoagulation. After laser burns, GFAP mRNA expression peaked at 16-24 h and on day 7, decreasing thereafter. VEGF mRNA expression was markedly increased after photocoagulation in old mice eyes, reaching 2.7 times its basal level at day 3, while it was only slightly increased in young mice (1.3 times its level in untreated young mice 3 days postphotocoagulation). At all time points after photocoagulation, MCP-1 mRNA expression was elevated in old mice, reaching high levels of expression at 16 h and day 3 respectively. CONCLUSIONS: Our results were based on the study of four different age groups and included not only data from morphological observations but also from a molecular analysis of the various alterations of cytokine signaling and expression. One-year-old mice demonstrated more extensive CNV formation and a slower pace of regression after laser photocoagulation than younger mice. These were accompanied by differences in growth factors and cytokine expression profiles indicate that aging is a factor that aggravates CNV. The above results may provide some insight into possible therapeutic strategies in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of specific terms under different meanings and varying definitions has always been a source of confusion in science. When we point our efforts towards an evidence based medicine for inflammatory bowel diseases (IBD) the same is true: Terms such as "mucosal healing" or "deep remission" as endpoints in clinical trials or treatment goals in daily patient care may contribute to misconceptions if meanings change over time or definitions are altered. It appears to be useful to first have a look at the development of terms and their definitions, to assess their intrinsic and context-independent problems and then to analyze the different relevance in present-day clinical studies and trials. The purpose of such an attempt would be to gain clearer insights into the true impact of the clinical findings behind the terms. It may also lead to a better defined use of those terms for future studies. The terms "mucosal healing" and "deep remission" have been introduced in recent years as new therapeutic targets in the treatment of IBD patients. Several clinical trials, cohort studies or inception cohorts provided data that the long term disease course is better, when mucosal healing is achieved. However, it is still unclear whether continued or increased therapeutic measures will aid or improve mucosal healing for patients in clinical remission. Clinical trials are under way to answer this question. Attention should be paid to clearly address what levels of IBD activity are looked at. In the present review article authors aim to summarize the current evidence available on mucosal healing and deep remission and try to highlight their value and position in the everyday decision making for gastroenterologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.