995 resultados para Hamilton, Richard Winter, 1794-1848.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most morphological characters diagnostic of the 13 Chinese species of the cyprinid genus Sinilabeo Rendahl, 1932, are identical to those of the genus Bangana Hamilton, 1822. Consequently, these 13 species are transferred to Bangana. A revised diagnosis is provided for the now-expanded genus Bangana, and a dichotomous key and taxonomic and nomenclatural notes are included for the following valid Chinese species: B. decora, B. dero, B. devdevi, B. discognathoides, B. lemassoni, B. lippa, B. rendahli, B. tonkinensis, B. tungting, B. wui, B. xanthogenys, B. yunnanensis, and B. zhui. Literature reports, by Chinese authors, of Sinilabeo dero from the upper Irrawady River basin, in Yunnan, are based on misidentifcations of B. devdevi. Sinilabeo cirrhinoides Wu and Lin in Wu, Lin, Chen, Chen and He, 1977, and S. laticeps Wu and Lin in Wu, Lin, Chen, Chen and He, 1977, are junior subjective synonyms of B. devdevi and B. lippa, respectively. Sinilabeo yunnanensis Wu, Lin, Chen, Chen and He, 1977, is an available name, and a lectotype is designated for the species. Bangana zhui ( Zheng and Chen, 1983) is a valid species distinct from B. yunnanensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the design and development challenges of the BART case study, an approach for developing and analyzing a formal model for reactive systems is presented. The approach makes use of a domain specific language for specifying control algorithms able to satisfy competing properties such as safety and optimality. The domain language, called SPC, offers several key abstractions such as the state, the profile, and the constraint to facilitate problem specification. Using a high-level program transformation system such as HATS being developed at the University of Nebraska at Omaha, specifications in this modelling language can be transformed to ML code. The resulting executable specification can be further refined by applying generic transformations to the abstractions provided by the domain language. Problem dependent transformations utilizing the domain specific knowledge and properties may also be applied. The result is a significantly more efficient implementation which can be used for simulation and gaining deeper insight into design decisions and various control policies. The correctness of transformations can be established using a rewrite-rule based induction theorem prover Rewrite Rule Laboratory developed at the University of New Mexico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEECAS SKLLQG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.