939 resultados para HUMAN MALARIA PARASITE
Resumo:
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19 kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The reaction of nine vector species of Chagas' disease to infection by seven different Trypanosoma cruzi strains; Berenice, Y, FL, CL, S. Felipe, Colombiana and Gávea, are examined and compared. On the basis of the insects' ability to establish and maintain the infection, vector species could be divided into two distinct groups which differ in their reaction to an acute infection by T. cruzi. While the proportion of positive bugs was found to be low in Triatoma infestans and Triatoma dimidiata it was high, ranging from 96.9% to 100% in the group of wild (Rhodnius neglectus, Triatoma rubrovaria)and essentially sylvatic vectors in process of adaptation to human dwellings, maintained under control following successful insecticidal elimination of Triatoma infestans (Panstrongylus megistus, Triatoma sordida and Triatoma pseudomaculata). An intermediate position is held by Triatoma brasiliensis and Rhodnius prolixus. This latter has been found to interchange between domestic and sylvatic environments. The most important finding is the strikingly good reaction between each species of the sylvatic bugs and practically all T. cruzi strains herein studied, thus indicating that the factors responsible for the excellent reaction of P.megistus to infection by Y strain, as previously reported also come into operation in the reaction of the same vector species to acute infections by five of the remaining T.cruzi strains. Comparison or data reported by other investigators with those herein described form the basis of the discussion of Dipetalogaster maximus as regards its superiority as a xenodiagnostic agent.
Resumo:
Cryptosporidium sp., a coccidian parasite usually found in the faeces of cattle, has been recently implicated as an agent of human intestinal disease, mainly in immunocompromised patients. In the study realized, by an indirect immunofluorescence technique, specific immunoglobulins (IgG and IgM) have been demonstrated in human serum against Cryptosporidium oocysts. Purified oocysts were used as antigens in the indirect immunofluorecence assay. After analyzing this test in sera from selected groups of patients, the frequency of both specific IgG and IgM of immunocompetent children who were excreting oocysts in their faeces was 62% and in children with negative excretion of oocysts was 20% and 40%, respectively. In adults infected with the human immunodeficiency virus (HIV) and who were excreting Cryptosporidium in their stools, the frequency was 57% for IgG but only 2% for IgM. Twenty three percent of immunocompromised adults with not determined excretion of oocysts in their stools had anti-Cryptosporidium IgG in their sera. Children infected with human immunodeficiency virus had no IgM and only 14% had IgG detectable in their sera. The indirect immunoflorescence assay, when used with other parasitological techniques appears to be useful for retrospective population studies and for diagnosis of acute infection. The humoral immune response of HIV positive patients to this protozoan agent needs clarification.
Resumo:
Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection.
Resumo:
OBJECTIVE: To show how a mathematical model can be used to describe and to understand the malaria transmission. METHODS: The effects on malaria transmission due to the impact of the global temperature changes and prevailing social and economic conditions in a community were assessed based on a previously presented compartmental model, which describes the overall transmission of malaria. RESULTS/CONCLUSIONS: The assessments were made from the scenarios produced by the model both in steady state and dynamic analyses. Depending on the risk level of malaria, the effects on malaria transmission can be predicted by the temperature ambient or local social and-economic conditions.
Resumo:
OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes) are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.
Resumo:
The study was carried out to evaluate the diagnostic performance of the ICT malaria Pf/PvTM test for vivax malaria diagnosis in Belém, Amazon region, Brazil. The results of blood malaria parasites examination using an immunochromatography test were compared with thick blood film (TBF) examination. It was also evaluated the performance of this test storaged at three different temperatures (25°C, 30°C, and 37°C) for 24 hours before use. Overall sensitivity of ICT Pf/PvTM was 61.8% with a specificity of 100%, positive and negative predictive value of 100% and 71.8%, respectively and accuracy of 80.6%. The test sensitivity was independent of the parasite density. This test needs to be further reviewed in order to have better performance for P. vivax malaria diagnosis.
Resumo:
Anaemia has a significant impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. Nutritional and infectious causes of anaemia are geographically variable and anaemia maps based on information on the major aetiologies of anaemia are important for identifying communities most in need and the relative contribution of major causes. We investigated the consistency between ecological and individual-level approaches to anaemia mapping, by building spatial anaemia models for children aged ≤15 years using different modeling approaches. We aimed to a) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STH) for anaemia endemicity in children aged ≤15 years and b) develop a high resolution predictive risk map of anaemia for the municipality of Dande in Northern Angola. We used parasitological survey data on children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variation in these infections. The predictions and their associated uncertainty were used as inputs for a model of anemia prevalence to predict small-scale spatial variation of anaemia. Stunting, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6%, and 9.8%, of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anemia risk. The results presented in this study can help inform the integration of the current provincial malaria control program with ancillary micronutrient supplementation and control of neglected tropical diseases, such as urogenital schistosomiasis and STH infection.
Resumo:
Anaemia is known to have an impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. We investigated the consistency between ecological and individual-level approaches to anaemia mapping by building spatial anaemia models for children aged ≤15 years using different modelling approaches. We aimed to (i) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STHs) in anaemia endemicity; and (ii) develop a high resolution predictive risk map of anaemia for the municipality of Dande in northern Angola. We used parasitological survey data for children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variations in these infections. Malnutrition, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6% and 9.8% of anaemia cases could be averted by treating malnutrition, malaria and S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anaemia risk. The results presented in this study can help inform the integration of the current provincial malaria control programme with ancillary micronutrient supplementation and control of neglected tropical diseases such as urogenital schistosomiasis and STH infections.
Resumo:
In August 1983 the Authors studied 36 patients with Plasmodium falciparum malaria and 14 normal individuals born in Humaita region who had never had malaria, had no spleen enlargement and had negative parasitemia as well as passive hemagglutination. Medical histories were obtained and complete physical examination were performed in all of them just as blood tests, parasite density and lymphocyte typing. The lymphocytes were separated and then frozen in liquid nitrogen for later typing by rosette formation. The patients were divided in two groups according to the presence (13 patients) or abscence (23 patients) of gametocytes before treatment. Severe malaria was predominant in the group without gametocytes. The results showed a decrease in the T-cell numbers in Plasmodium falciparum acute malaria patients both with or without gametocytes before the treatment, while B-cell numbers were normal only in the patients with gametocytes. These observations as like as those previously reported by the Authors, permit to associate the presence of gametocytes in peripheral blood and normal number of B-cells in patients with mild Plasmodium falciparum malaria.
Resumo:
Biopsies from cutaneous and mucosal lesions from 40 patients with active paracoccidioidomycosis, were studied histopathologically. All cases exhibited chronic granulomatous inflammation and 38 also presented suppuration; this picture corresponded to the mixed mycotic granuloma (MMG). Pseudoepitheliomatous hyperplasia and the transepidermic (or epithelial) elimination of the parasite, were observed in all cases. In paracoccidioidomycosis elimination takes place through formation of progressive edema, accompained by exocytosis. The edema gives rise to spongiosis, microvesicles and microabscesses which not only contain the fungus but also, various cellular elements. Cells in charge of the phagocytic process were essentialy Langhans giant cells; PMN's, epithelioid and foreign body giant cells were poor phagocytes. An additional finding was the presence of fibrosis in most biopsies.
Resumo:
Sixteen S. mansoni infected and untreated patients (5 with recent infection and 11 with chronic disease) were evaluated for their in vitro natural killer (NK) activity against the NK sensitive target K562 cell line. NK levels in 9 out of 11 patients (82%) with chronic disease were significantly lower (mean = 15 ± 6%),compared with patients recently infected (mean = 41 ± 9% p < 0.001) and with the control group (mean = 38 ± 13% p < 0.001). However, both patients and controls NK activity was stimulated by soluble adult worm antigens (SAWA), indicating that NK function even in the chronic stage of the infection is able to respond to the parasite antigens. These results suggest the possibility of NK cell participation as effector mechanism against S. mansoni.
Resumo:
The antigenicity of promastigotes of Leishmania braziliensis braziliensis (L. b.braziliensis) treated with 1% sodium desoxycholate in 10 mM Tris-Hcl pH 8.2 was analysed by immunoblot using as probes sera from American cutaneous leishmaniasis (ACL), American visceral leishmaniasis (AVL), schistosomiasis, malaria and Chagas' disease. The ACL sera reacted constantly with a 60 kD band. No reactivity to this protein was observed with sera from the other diseases above mentioned indicating that the 60 kD protein may be used in serodiagnosis for ACL.
Resumo:
Human term placental villi cultured ''in vitro" were maintained with bloodstream forms of Trypanosoma cruzi during various periods of time. Two different concentrations of the parasite were employed. Controls contained no T. cruzi. The alkaline phosphatase activity was determined in placental villi by electron microscopy and its specific activity in the culture medium by biochemical methods. Results showed that the hemoflagellate produces a significant decrease in enzyme activity as shown by both ultracytochemical and specific activity studies and this activity was lower in cultures with high doses of parasites. The above results indicate that the reduction in enzyme activity coincides with the time of penetration and proliferation of T. cruzi in mammalian cells. These changes may represent an interaction between human trophoblast and T. cruzi.