946 resultados para HEART ARREST, INDUCED
Resumo:
Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.
Resumo:
Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue-derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 10(7) cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%-60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.
Resumo:
AIMS: The adaptation of the myocardial microcirculation in humans to pathologic and physiologic stress has not been examined in vivo so far. We sought to test whether the relative blood volume (rBV) measured by myocardial contrast echocardiography (MCE) can differentiate between left ventricular (LV) hypertrophy (LVH) in hypertensive heart disease and athlete's heart. METHODS AND RESULTS: Four groups were investigated: hypertensive patients with LVH (n = 15), semi-professional triathletes with LVH (n = 15), professional football players (n = 15), and sedentary control individuals without cardiovascular disease (n = 15). MCE was performed at rest and during adenosine-induced hyperaemia. The rBV (mL mL(-1)), its exchange frequency (beta, min(-1)), and myocardial blood flow (mL min(-1) g(-1)) were derived from steady state and refill sequences of ultrasound contrast agent. Hypertensive patients had lower rBV (0.093 +/- 0.013 mL mL(-1)) than triathletes (0.141 +/- 0.012 mL mL(-1), P < 0.001), football players (0.129 +/- 0.014 mL mL(-1), P < 0.001), and sedentary individuals (0.126 +/- 0.018 mL mL(-1), P < 0.001). Conversely, the exchange frequency (beta) was significantly higher in hypertensive patients (11.3 +/- 3.8 min(-1)) than in triathletes (7.4 +/- 1.8 min(-1)), football players (7.7 +/- 2.3 min(-1)), and sedentary individuals (9.0+/-2.5 min(-1)). An rBV below 0.114 mL mL(-1) distinguished hypertensive patients and triathletes with a sensitivity of 93% and a specificity of 100%. CONCLUSION: Pathologic and physiologic LVH were differentiated non-invasively and accurately by rBV, a measure of vascularisation assessed by MCE.
Resumo:
Treatment of metastatic breast cancer with doxorubicin (Doxo) in combination with trastuzumab, an antibody targeting the ErbB2 receptor, results in an increased incidence of heart failure. Doxo therapy induces reactive oxygen species (ROS) and alterations of calcium homeostasis. Therefore, we hypothesized that neuregulin-1 beta (NRG), a ligand of the cardiac ErbB receptors, reduces Doxo-induced alterations of EC coupling by triggering antioxidant mechanisms. Adult rat ventricular cardiomyocytes (ARVM) were isolated and treated for 18-48 h. SERCA protein was analyzed by Western blot, EC coupling parameters by fura-2 and video edge detection, gene expression by RT-PCR, and ROS by DCF-fluorescence microscopy. At clinically relevant doses Doxo reduced cardiomyocytes contractility, SERCA protein and SR calcium content. NRG, similarly as the antioxidant N-acetylcystein (NAC), did not affect EC coupling alone, but protected against Doxo-induced damage. NRG and Doxo showed an opposite modulation of glutathione reductase gene expression. NRG, similarly as NAC, reduced peroxide- or Doxo-induced oxidative stress. Specific inhibitors showed, that the antioxidant action of NRG depended on signaling via the ErbB2 receptor and on the Akt- and not on the MAPK-pathway. Therefore, NRG attenuates Doxo-induced alterations of EC coupling and reduces oxidative stress in ARVM. Inhibition of the ErbB2/NRG signaling pathway by trastuzumab in patients concomitantly treated with Doxo might prevent beneficial effects of NRG in the myocardium.
Resumo:
Postmortem investigation is increasingly supported by computed tomography (CT) and magnetic resonance imaging, in which postmortem minimal invasive angiography has become important. The newly introduced approach using an aqueous contrast agent solution provided excellent vessel visualization but was suspected to possibly cause tissue edema artifacts in histological investigations. The aim of this study was to investigate on a porcine heart model whether it is possible to influence the contrast agent distribution within the soft tissue by changing its viscosity by dissolving the contrast agent in polyethylene glycol (PEG) as a matrix medium. High-resolution CT scans after injection showed that viscosities above c. 15 mPa s (65% PEG) prevented a contrast agent distribution within the capillary bed of the left ventricular myocardium. Thereby, the precondition of edema artifacts could be reduced. Its minimal invasive application on human corpses needs to be further adapted as the flow resistance is expected to differ between different tissues.
Resumo:
Myocardial dysfunction and arrhythmias may be induced by congenital heart defects, but also be the result of heart surgery with cardiopulmonary bypass (CPB), potentially caused by differential expression of connexin40 (Cx40) and connexin43 (Cx43). In 16 pediatric patients undergoing corrective heart surgery, connexin mRNA expression was studied in volume overloaded (VO group, n=8) and not overloaded (NO group, n=8) right atrial myocardium, excised before and after CPB. Additionally, in eight of these patients ventricular specimens were investigated. The atrial Cx43 expression decreased during CPB, which was restricted to the VO group (p=0.008). In contrast, atrial Cx40 mRNA did not change during CPB. In ventricular myocardium compared to atrial mRNA levels, Cx40 was lower (p=0.006) and Cx43 higher (p=0.017) expressed, without significant change during CPB. This study revealed a significant influence of CPB and the underlying heart defect on Cx43 expression.
Resumo:
Continuous infusion of intravenous prostaglandin E1 (PgE1, 2.5 mug/kg/min) was used to determine how vasodilation affects oxygen consumption of the microvascular wall and tissue pO(2) in the hamster window chamber model. While systemic measurements (mean arterial pressure and heart rate) and central blood gas measurements were not affected, PgE1 treatment caused arteriolar (64.6 +/- 25.1 microm) and venular diameter (71.9 +/- 29.5 microm) to rise to 1.15 +/- 0.21 and 1.06 +/- 0.19, respectively, relative to baseline. Arteriolar (3.2 x 10(-2) +/- 4.3 x 10(-2) nl/s) and venular flow (7.8 x 10(-3) +/- 1.1 x 10(-2)/s) increased to 1.65 +/- 0.93 and 1.32 +/- 0.72 relative to baseline. Interstitial tissue pO(2) was increased significantly from baseline (21 +/- 8 to 28 +/- 7 mmHg; P < 0.001). The arteriolar vessel wall gradient, a measure of oxygen consumption by the microvascular wall decreased from 20 +/- 6 to 16 +/- 3 mmHg (P < 0.001). The arteriolar vessel wall gradient, a measure of oxygen consumption by the vascular wall, decreased from 20 +/- 6 to 16 +/- 3 mmHg (P < 0.001). This reduction reflects a 20% decrease in oxygen consumption by the vessel wall and up to 50% when cylindrical geometry is considered. The venular vessel wall gradient decreased from 12 +/- 4 to 9 +/- 4 mmHg (P < 0.001). Thus PgE1-mediated vasodilation has a positive microvascular effect: enhancement of tissue perfusion by increasing flow and then augmentation of tissue oxygenation by reducing oxygen consumption by the microvascular wall.
Resumo:
Radial artery (RA) bypass grafts can develop severe vasospasm. As histamine is known to induce vasospasm, its effect on RA was assessed compared with the classic bypass vessels internal mammary artery (MA) and saphenous vein (SV). The vessels were examined in organ chambers for isometric tension recording. Histamine induced contractions on baseline; the sensitivity was higher in RA and SV than MA. After precontraction with norepinephrine, histamine did not evoke relaxations of RA but induced relaxations of MA and less of SV at lower concentrations; it induced contractions at higher concentrations, reaching similar levels in all three vessels. Indomethacin did not affect the response of MA and RA but potentiated relaxations and reduced contractions of SV. Endothelium removal, N(omega)-nitro-L-arginine methyl ester (L-NAME), or the H2-receptor blocker cimetidine did not affect the response of RA, but inhibited relaxations and enhanced contractions in MA and inhibited relaxations in SV; in the latter, only L-NAME enhanced contractions. Real-time PCR detected much lower expression of endothelial H2-receptor in RA than MA or SV. Western blots revealed similar endothelial nitric oxide (NO) synthase expression in all three vessels. Relaxations to acetylcholine were identical in RA and MA. Thus histamine releases NO by activating the endothelial H2-receptor, the expression of which is much lower in RA than MA or SV. H2-receptor activation also releases prostaglandins in SV, partially antagonizing NO. The lack of histamine-induced NO production represents a possible mechanism of RA vasospasm.
Resumo:
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
BACKGROUND: Hypnotic depth but not haemodynamic responsiveness is measured with EEG-based monitors. In this study we compared heart rate variability (HRV) in unstimulated patients and stimulation-induced HRV at different levels of anaesthesia. METHODS: A total of 95 ASA I or II patients were randomly assigned to five groups (Group 1: BIS 45(5), remifentanil 1 ng ml(-1); Group 2: BIS 45(5), remifentanil 2 ng ml(-1); Group 3: BIS 45(5), remifentanil 4 ng ml(-1); Group 4: BIS 30(5), remifentanil 2 ng ml(-1); Group 5: BIS 60(5), remifentanil 2 ng ml(-1)). A time- and frequency-domain analysis of the RR interval (RRI) from the electrocardiogram was performed. HRV before induction, before and after a 5 s tetanic stimulus of the ulnar nerve, and before and after tracheal intubation was compared between groups, between stimuli, and between responders to intubation [systolic arterial pressure (SAP) increase >20 mm Hg, a maximal heart rate (HR) after intubation >90 min(-1) or both] and non-responders (anova). RESULTS: Induction of anaesthesia significantly lowered HR and HRV. Mean RRI before stimulation was higher in G3 than in G1, G2, and G4 (P < 0.001), whereas the other HRV parameters were similar. Intubation induced a greater HRV response than tetanic stimulation. The mean RRI after intubation was lower in G3 compared with the other groups and the sd of the RRI after tetanic stimulation was lower in G3 compared with G5. Otherwise, unstimulated HRV and stimulation-induced HRV were similar in responders and non-responders. CONCLUSION: HRV parameters discriminate between awake and general anaesthesia, are different after tracheal intubation and a 5 s ulnar nerve stimulation, but do not discriminate between different levels of haemodynamic responsiveness during surgical anaesthesia.
Resumo:
Gender related issues in manifestation, diagnosis and treatment of coronary artery disease are important but still not well recognized. Women are more likely to present late after first symptoms of myocardial infarction. Myocardial infarction is more often unrecognized. In regard to complications after myocardial infarctions ventricular tachycardia and cardiac arrest are more frequent and women are also more likely to develop heart failure or cardiogenic shock. The reason for this is most probably the fact that women presenting with myocardial infarction are of older age and have a higher incidence of co-morbidities. Thrombolysis and coronary angioplasty are less often performed in women in the setting of myocardial infarction. However there is a clear trend toward improvement of this situation during the last years. The reopening rate of occluded coronary arteries with thrombolysis and with coronary angioplasty is similar in women compared to men. Perioperative risk with aorto-coronary bypass surgery is higher in women, which can not be fully explained by higher age and co-morbidities. However 10 years survival rate after aorto-coronary bypass-surgery is similar for men and women, although occlusion of venous grafts is seen more often in women. The benefit of structured cardiac rehabilitation after an acute event is similar for younger and older women and as good as in men. Positive effects of cardiac rehabilitation include increased physical performance, reduction of body fat, improvement of lipid-profiles and an improvement of the psychosocial situation and quality of life.
Resumo:
The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q-T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.
Resumo:
BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.