982 resultados para HAFNIUM ALPHA-HYDROXYCARBOXYLATES
Resumo:
In this work, an alpha-Al2O3:C crystal with highly sensitive thermoluminescence was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as raw materials. The optical and luminescent properties and the dosimetric characteristics of the crystal were investigated. An as-grown alpha-Al2O3:C crystal shows a single glow peak at 462 K and a blue emission peak at 415 nm. The thermoluminescence (TL) response of the crystal shows a linear-sublinear-saturation characteristic. In the dose range from 5 x 10(-6) to 10Gy, the alpha-Al2O3:C crystal shows excellent linearity, and saturation was observed at about 30Gy. The sensitivity of the crystal decreases as the heating rate increases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
alpha-Al2O3:C crystal shows excellent thermoluminescence (TL) and optically stimulated luminescence (OSL) properties but the real role carbon plays in this crystal is still not clearly understood so far. In this work, alpha-Al2O3:C crystal doping with different amounts of carbon were grown by the temperature gradient technique, and TL and OSL properties of as-grown crystals were investigated. Additionally, a mechanism was proposed to explain the role of carbon in forming the TL and OSL properties of alpha-Al2O3:C. TL and OSL intensities of as-grown crystals increase with the increasing amount of carbon doping in the crystal, but no shift is found in the glow peak location at 465 K. As the amount of carbon doping in the crystals decreases, OSL decay rate becomes faster. With the increase in heating rate, the integral TL response of as-grown crystals decreases and glow peak shifts to higher temperatures. TL response decrease rate increases with the increasing amount of carbon doping in the crystals. All the TL and OSL response curves of as-grown crystals show linear-sublinear-saturation characteristic, and OSL dose response exhibits higher sensitivity and wider linear dose range than that of TL. The crystal doping with 5000 ppm carbon shows the best dosimetric properties. Carbon plays the role of a dopant in alpha-Al2O3:C crystal and four-valent carbon anions replace the two-valent anions of oxygen during the crystal growth process, and large amounts of oxygen vacancies were formed, which corresponds to the high absorption coefficient of F and F+ centers in the crystals.
Resumo:
We observed and described some phenomena, which were that when a alpha-BBO crystal was irradiated by a focused femtosecond laser beam, the temperature effect happened in a minute area of focus, then the induced beta-BBO phase was separated within the minute area in the alpha-BBO crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work. an alpha-Al2O3:C crystal was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as the raw materials. The optical, optically stimulated luminescence (OSL) properties and dosimetric characteristics of as-grown crystal were investigated. As-grown alpha-Al2O3:C crystal shows strong absorption band at 205, 230 and 256 nm. Three-dimensional thermoluminescence (TL) emission spectrum of the crystal shows a single emission peak at similar to 415 nm. The OSL decay curve can be fitted to two exponentials, the faster component and the slower component. The OSL response of the crystal shows a linear-sublinear-saturation characteristic. As-grown alpha-Al2O3:C crystal shows excellent linearity in the dose range from 5 x 10(-6) to 50 Gy. For doses higher than the saturation dose (100 Gy). the OSL sensitivity decreases as the dose increases. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3 alpha or GSK-3 beta. In contrast, depletion of GSK-3 beta, but not GSK-3 alpha, sensitized PDA cell lines to TNF alpha-induced cell death. Further experiments demonstrated that TNF alpha-stimulated I kappa B alpha phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3 beta-deficient MEFs. Nonetheless, inhibition of GSK-3 beta function in MEFs or PDA cell lines impaired the expression of the NF-kappa B target genes Bcl-xL and cIAP2, but not I kappa B alpha. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3 beta targeted to the nucleus but not GSK-3 beta targeted to the cytoplasm, suggesting that GSK-3 beta regulates NF-kappa B function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3 beta overexpression and nuclear localization contribute to TNF alpha and TRAIL resistance via anti-apoptotic NF-kappa B genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.
Resumo:
Hot pressing (HP) at higher sintering temperature has been a traditional and prevalent technique for the fabrication of alpha-SiAlON. In order to prepare translucent SiAlON more easily, LiF was used as a non-oxide sintering additive to lower the sintering temperature to <= 1650 degrees C. As a result, all of the samples possessed a good hardness and fracture toughness. At the same time, the lower temperature sintered samples showed a higher optical transmittance in the range of 2.5-5.5 mu m wavelength (0.5 mm in thickness). The maximum infrared transmission reached 68% at a wavelength of 3.3 mu m. The present work shows that the sintering process has a strong effect on microstructure and property of alpha-SiAlON. To be exact, a lower sintering temperature and longer holding time can produce some fully-developed microstrcture, which is beneficial for the optical transmittance. (C) 2008 The Ceramic Society of Japan. All rights reserved.
Resumo:
Recent studies showed that nonhuman primate TRIM5 alpha can efficiently block HIV-1 infection in human cell lines. It can also restrict other retroviruses, therefore, suggested as a general defender against retrovirus infection. Here, we present an evolutionary analysis of TRIM5 alpha in primates. Our results demonstrated that TRIM5a has been evolving rapidly in primates, which is likely caused by Darwinian positive selection. The SPRY domain of TRM5 alpha, which may be responsible for recognition of incoming viral capsids showed higher nonsynonymous/synonymous substitution ratios than the non-SPRY domain, indicating that the adaptive evolution of TRIM5a ill primates might be an innate strategy developed in defending retrovirus infection during primate evolution. In addition, the comparative protein sequence analysis suggested that the amino acid substitution pattern at a single site (344R/Q/P) located in the SPRY domain may explain the differences in Susceptibilities of HIV-1 infection in diverse primate species. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obta
Resumo:
In this paper we present Poisson sum series representations for α-stable (αS) random variables and a-stable processes, in particular concentrating on continuous-time autoregressive (CAR) models driven by α-stable Lévy processes. Our representations aim to provide a conditionally Gaussian framework, which will allow parameter estimation using Rao-Blackwellised versions of state of the art Bayesian computational methods such as particle filters and Markov chain Monte Carlo (MCMC). To overcome the issues due to truncation of the series, novel residual approximations are developed. Simulations demonstrate the potential of these Poisson sum representations for inference in otherwise intractable α-stable models. © 2011 IEEE.