978 resultados para H.264
Resumo:
Diabetes mellitus is a complex disease resulting in altered glucose homeostasis. In both type 1 and type 2 diabetes mellitus, pancreatic β cells cannot secrete appropriate amounts of insulin to regulate blood glucose level. Moreover, in type 2 diabetes mellitus, altered insulin secretion is combined with a resistance of insulin-target tissues, mainly liver, adipose tissue, and skeletal muscle. Both environmental and genetic factors are known to contribute to the development of the disease. Growing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNA molecules, are involved in the pathogenesis of diabetes. miRNAs function as translational repressors and are emerging as important regulators of key biological processes. Here, we review recent studies reporting changes in miRNA expression in tissues isolated from different diabetic animal models. We also describe the role of several miRNAs in pancreatic β cells and insulin-target tissues. Finally, we discuss the possible use of miRNAs as blood biomarkers to prevent diabetes development and as tools for gene-based therapy to treat both type 1 and type 2 diabetes mellitus.
Resumo:
When mouse dendritic cells (DCs) are isolated from tissues, purified and placed in a nutritive culture they die more rapidly than would be expected from their normal turnover in vivo. This can distort culture assays of DC function. We therefore tested several approaches to prolonging DC survival in culture. Of several cytokines tested granulocyte-macrophage colony stimulating factor was most effective at preserving the viability of conventional DCs (cDCs) but was ineffective for plasmacytoid DCs (pDCs). Surprisingly, Fms-like tyrosine kinase 3 ligand, crucial for DC development, produced only a marginal improvement in DC survival in culture, and interleukin-3, reported to prevent apoptosis of human pDCs, produced only a minor improvement in survival of mouse DCs. Genetic manipulation of cell death pathways was also tested, to avoid activation effects exerted by cytokine signalling. The isolation of DCs from mice overexpressing Bcl-2 was especially effective in maintaining pDC viability but gave a lesser improvement in cDC viability. DCs isolated from Bim(-/-)Noxa(-/-) mice also showed improved culture survival, but in this case with pDCs showing the least improvement.
Resumo:
BACKGROUND: Hypertension, hypercholesterolemia, obesity and smoking are highly prevalent among patients with familial premature coronary artery disease (FP-CAD). Whether these risk factors equally affect other family members remains unknown. METHODS: We examined 222 FP-CAD patients, 158 unaffected sibs, 197 offspring and 94 spouses in 108 FP-CAD families (> or = 2 sibs having survived CAD diagnosed before age 51 (M)/56 (F)), and compared them to population controls. RESULTS: Unaffected sibs had a higher prevalence of hypertension (49% versus 24%, p<0.001), hypercholesterolemia (47% versus 34%, p=0.002), abdominal obesity (35% versus 24%, p=0.006) and smoking (39% versus 24%, p=0.001) than population controls. Offspring had a higher prevalence of hypertension (females), hypercholesterolemia and abdominal obesity than population controls. No difference was observed between spouses and controls. Compared to unaffected sibs, FP-CAD affected sibs had a similar risk factor profile, except for smoking, which was more prevalent (76% versus 39%, p=0.008). CONCLUSIONS: Hypertension, obesity and hypercholesterolemia are highly prevalent among first-degree relatives, but not spouses, of patients with FP-CAD. These persons deserve special medical attention due to their familial/genetic susceptibility to atherogenic metabolic abnormalities. In these families, smoking may be the trigger for FP-CAD.
Resumo:
The aim of this study was to determine whether multiwalled carbon nanotubes (MWNCT) are taken up by and are toxic to human intestinal enterocytes using the Caco-2 cell model. Caco-2 cells were exposed to 50 ?g/ml MWCNT (oxidized or pristine) for 24 h, and experiments were repeated in the presence of 2.5 mg/L natural organic matter. Cells displayed many of the properties that characterize enterocytes, such as apical microvilli, basolateral basement membrane, and glycogen. The cell monolayers also displayed tight junctions and electrical resistance. Exposure to pristine and oxidized MWCNT, with or without natural organic matter, did not markedly affect viability, which was assessed by measuring activity of released lactate dehydrogenase (LDH) and staining with propidium iodide. Ultrastructural analysis revealed some damage to microvilli colocalized with the MWCNT; however, neither type of MWCNT was taken up by Caco-2 cells. In contrast, pristine and oxidized MWCNT were taken up by the macrophage RAW 264.7 line. Our study suggests that intestinal enterocytes cells do not take up MWCNT. [Authors]